Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Spatio-temporal characterization of the multiple current pulse regime of diffuse barrier discharges in helium with nitrogen admixtures

2017-09-20, Bogaczyk, Marc, Tschiersch, Robert, Nemschokmichal, Sebastian, Meichsner, Jürgen

This work reports on the spatio-temporal characterization of the multiple current pulse regime of diffuse barrier discharges driven by sine-wave feeding voltage at a frequency of 2 kHz in helium with small nitrogen admixtures. The discharge gap of 3 mm is bounded by glass plates on both plane electrodes. Priority is given to the lateral discharge inhomogeneities, underlying volume- and surface-memory effects, and the breakdown mechanism. Therefore, relevant processes in the discharge volume and on the dielectric surfaces were investigated by ICCD camera imaging and optical emission spectroscopy in combination with electrical measurements and surface charge diagnostics using the electro-optic Pockels effect of a bismuth silicon oxide crystal. The number of current pulses per half-cycle of the sine-wave voltage rises with increasing nitrogen admixture to helium due to the predominant role of the Penning ionization. Here, the transition from the first glow-like breakdown to the last Townsend-like breakdown is favored by residual species from the former breakdowns which enhance the secondary electron emission during the pre-phase of the later breakdowns. Moreover, the surface charge measurements reveal that the consecutive breakdowns occur alternately at central and peripheral regions on the electrode surface. These spatial inhomogeneities are conserved by the surface charge memory effect as pointed out by the recalculated spatio-temporal development of the gap voltage.

Loading...
Thumbnail Image
Item

Self-stabilized discharge filament in plane-parallel barrier discharge configuration: formation, breakdown mechanism, and memory effects

2017-09-21, Tschiersch, R., Nemschokmichal, S., Bogaczyk, M., Meichsner, J.

Single self-stabilized discharge filaments were investigated in the plane-parallel electrode configuration. The barrier discharge was operated inside a gap of 3 mm shielded by glass plates to both electrodes, using helium-nitrogen mixtures and a square-wave feeding voltage at a frequency of 2 kHz. The combined application of electrical measurements, ICCD camera imaging, optical emission spectroscopy and surface charge diagnostics via the electro-optic Pockels effect allowed the correlation of the discharge development in the volume and on the dielectric surfaces. The formation criteria and existence regimes were found by systematic variation of the nitrogen admixture to helium, the total pressure and the feeding voltage amplitude. Single self-stabilized discharge filaments can be operated over a wide parameter range, foremost, by significant reduction of the voltage amplitude after the operation in the microdischarge regime. Here, the outstanding importance of the surface charge memory effect on the long-term stability was pointed out by the recalculated spatio-temporally resolved gap voltage. The optical emission revealed discharge characteristics that are partially reminiscent of both the glow-like barrier discharge and the microdischarge regime, such as a Townsend pre-phase, a fast cathode-directed ionization front during the breakdown and radially propagating surface discharges during the afterglow.

Loading...
Thumbnail Image
Item

Surface charge measurements on different dielectrics in diffuse and filamentary barrier discharges

2017-2-10, Tschiersch, R., Nemschokmichal, S., Bogaczyk, M., Meichsner, J.

Previously, we reported on the measurement of surface charges during the operation of barrier discharges (BDs) using the electro-optic Pockels effect of a bismuth silicon oxide (BSO) crystal. With the present work, the next milestone is achieved by making this powerful method accessible to various dielectrics which are typically used in BD configurations. The dynamics and spatial distribution of positive and negative surface charges were determined on optically transparent borosilicate glass, mono-crystalline alumina and magnesia, respectively, covering the BSO crystal. By variation of the nitrogen admixture to helium and the pressure between 500 mbar and 1 bar, both the diffuse glow-like BD and the self-stabilized discharge filaments were operated inside of a gas gap of 3 mm. The characteristics of the discharge and, especially, the influence of the different dielectrics on its development were studied by surface charge diagnostics, electrical measurements and ICCD camera imaging. Regarding the glow-like BD, the breakdown voltage changes significantly by variation of the cathodic dielectric, due to the different effective secondary electron emission (SEE) coefficients. These material-specific SEE yields were estimated using Townsend's criterion in combination with analytical calculations of the effective ionization coefficient in helium with air impurities. Moreover, the importance of the surface charge memory effect for the self-stabilization of discharge filaments was quantified by the recalculated spatio-temporal behavior of the gap voltage.

Loading...
Thumbnail Image
Item

Charge transfer to ground-state ions produces free electrons

2017, You, D., Fukuzawa, H., Sakakibara, Y., Takanashi, T., Ito, Y., Maliyar, G G., Motomura, K., Nagaya, K., Nishiyama, T., Asa, K., Sato, Y., Saito, N., Oura, M., Schöffler, M., Kastirke, G., Hergenhahn, U., Stumpf, V., Gokhberg, K., Kuleff, A.I., Cederbaum, L.S., Ueda, K

Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.