Search Results

Now showing 1 - 10 of 101
  • Item
    Liquefaction of Biopolymers: Solvent-free Liquids and Liquid Crystals from Nucleic Acids and Proteins
    (Washington, DC : ACS Publications, 2017) Liu, Kai; Ma, Chao; Göstl, Robert; Zhang, Lei; Herrmann, Andreas
    ConspectusBiomacromolecules, such as nucleic acids, proteins, and virus particles, are persistent molecular entities with dimensions that exceed the range of their intermolecular forces hence undergoing degradation by thermally induced bond-scission upon heating. Consequently, for this type of molecule, the absence of a liquid phase can be regarded as a general phenomenon. However, certain advantageous properties usually associated with the liquid state of matter, such as processability, flowability, or molecular mobility, are highly sought-after features for biomacromolecules in a solvent-free environment. Here, we provide an overview over the design principles and synthetic pathways to obtain solvent-free liquids of biomacromolecular architectures approaching the topic from our own perspective of research. We will highlight the milestones in synthesis, including a recently developed general surfactant complexation method applicable to a large variety of biomacromolecules as well as other synthetic principles granting access to electrostatically complexed proteins and DNA.These synthetic pathways retain the function and structure of the biomacromolecules even under extreme, nonphysiological conditions at high temperatures in water-free melts challenging the existing paradigm on the role of hydration in structural biology. Under these conditions, the resulting complexes reveal their true potential for previously unthinkable applications. Moreover, these protocols open a pathway toward the assembly of anisotropic architectures, enabling the formation of solvent-free biomacromolecular thermotropic liquid crystals. These ordered biomaterials exhibit vastly different mechanical properties when compared to the individual building blocks. Beyond the preparative aspects, we will shine light on the unique potential applications and technologies resulting from solvent-free biomacromolecular fluids: From charge transport in dehydrated liquids to DNA electrochromism to biocatalysis in the absence of a protein hydration shell. Moreover, solvent-free biological liquids containing viruses can be used as novel storage and process media serving as a formulation technology for the delivery of highly concentrated bioactive compounds. We are confident that this new class of hybrid biomaterials will fuel further studies and applications of biomacromolecules beyond water and other solvents and in a much broader context than just the traditional physiological conditions. © 2017 American Chemical Society.
  • Item
    Polypropylene/Layered Double Hydroxide Nanocomposites: Influence of LDH Intralayer Metal Constituents on the Properties of Polypropylene
    (Washington, DC : ACS Publications, 2017) Nagendra, Baku; Rosely, C. V. Sijla; Leuteritz, Andreas; Reuter, Uta; Gowd, E. Bhoje
    Sonication-assisted delamination of layered double hydroxides (LDHs) resulted in smaller-sized LDH nanoparticles (∼50-200 nm). Such delaminated Co-Al LDH, Zn-Al LDH, and Co-Zn-Al LDH solutions were used for the preparation of highly dispersed isotactic polypropylene (iPP) nanocomposites. Transmission electron microscopy and wide-angle X-ray diffraction results revealed that the LDH nanoparticles were well dispersed within the iPP matrix. The intention of this study is to understand the influence of the intralayer metal composition of LDH on the various properties of iPP/LDH nanocomposites. The sonicated LDH nanoparticles showed a significant increase in the crystallization rate of iPP; however, not much difference in the crystallization rate of iPP was observed in the presence of different types of LDH. The dynamic mechanical analysis results indicated that the storage modulus of iPP was increased significantly with the addition of LDH. The incorporation of different types of LDH showed no influence on the storage modulus of iPP. But considerable differences were observed in the flame retardancy and thermal stability of iPP with the type of LDH used for the preparation of nanocomposites. The thermal stability (50% weight loss temperature (T0.5)) of the iPP nanocomposite containing three-metal LDH (Co-Zn-Al LDH) is superior to that of the nanocomposites made of two-metal LDH (Co-Al LDH and Zn-Al LDH). Preliminary studies on the flame-retardant properties of iPP/LDH nanocomposites using microscale combustion calorimetry showed that the peak heat release rate was reduced by 39% in the iPP/Co-Zn-Al LDH nanocomposite containing 6 wt % LDH, which is higher than that of the two-metal LDH containing nanocomposites, iPP/Co-Al LDH (24%) and iPP/Zn-Al LDH (31%). These results demonstrated that the nanocomposites prepared using three-metal LDH showed better thermal and flame-retardant properties compared to the nanocomposites prepared using two-metal LDH. This difference might be due to the better char formation capability of three-metal LDH compared to that of two-metal LDH.
  • Item
    Plasmonic Hepatitis B Biosensor for the Analysis of Clinical Saliva
    (Columbus, Ohio : American Chemical Society, 2017) Riedel, Tomáš; Hageneder, Simone; Surman, František; Pop-Georgievski, Ognen; Noehammer, Christa; Hofner, Manuela; Brynda, Eduard; Rodriguez-Emmenegger, Cesar; Dostálek, Jakub
    A biosensor for the detection of hepatitis B antibodies in clinical saliva was developed. Compared to conventional analysis of blood serum, it offers the advantage of noninvasive collection of samples. Detection of biomarkers in saliva imposes two major challenges associated with the low analyte concentration and increased surface fouling. The detection of minute amounts of hepatitis B antibodies was performed by plasmonically amplified fluorescence sandwich immunoassay. To have access to specific detection, we prevented the nonspecific adsorption of biomolecules present in saliva by brushes of poly[(N-(2-hydroxypropyl) methacrylamide)-co-(carboxybetaine methacrylamide)] grafted from the gold sensor surface and post modified with hepatitis B surface antigen. Obtained results were validated against the response measured with ELISA at a certified laboratory using serum from the same patients. © 2017
  • Item
    High-Sensitivity Rheo-NMR Spectroscopy for Protein Studies
    (Columbus, Ohio : American Chemical Society, 2017) Morimoto, Daichi; Walinda, Erik; Iwakawa, Naoto; Nishizawa, Mayu; Kawata, Yasushi; Yamamoto, Akihiko; Shirakawa, Masahiro; Scheler, Ulrich; Sugase, Kenji
    Shear stress can induce structural deformation of proteins, which might result in aggregate formation. Rheo-NMR spectroscopy has the potential to monitor structural changes in proteins under shear stress at the atomic level; however, existing Rheo-NMR methodologies have insufficient sensitivity to probe protein structure and dynamics. Here we present a simple and versatile approach to Rheo-NMR, which maximizes sensitivity by using a spectrometer equipped with a cryogenic probe. As a result, the sensitivity of the instrument ranks highest among the Rheo-NMR spectrometers reported so far. We demonstrate that the newly developed Rheo-NMR instrument can acquire high-quality relaxation data for a protein under shear stress and can trace structural changes in a protein during fibril formation in real time. The described approach will facilitate rheological studies on protein structural deformation, thereby aiding a physical understanding of shear-induced amyloid fibril formation.
  • Item
    Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes
    (Weinheim : Wiley-VCH, 2017-9-13) Jarvis, Amanda G.; Obrecht, Lorenz; Deuss, Peter J.; Laan, Wouter; Gibson, Emma K.; Wells, Peter P.; Kamer, Paul C. J.
    Artificial metalloenzymes (ArMs) are hybrid catalysts that offer a unique opportunity to combine the superior performance of natural protein structures with the unnatural reactivity of transition-metal catalytic centers. Therefore, they provide the prospect of highly selective and active catalytic chemical conversions for which natural enzymes are unavailable. Herein, we show how by rationally combining robust site-specific phosphine bioconjugation methods and a lipid-binding protein (SCP-2L), an artificial rhodium hydroformylase was developed that displays remarkable activities and selectivities for the biphasic production of long-chain linear aldehydes under benign aqueous conditions. Overall, this study demonstrates that judiciously chosen protein-binding scaffolds can be adapted to obtain metalloenzymes that provide the reactivity of the introduced metal center combined with specifically intended product selectivity.
  • Item
    Tuning the spin coherence time of Cu(II)−(bis)oxamato and Cu(II)−(bis)oxamidato complexes by advanced ESR pulse protocols
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-4-27) Zaripov, Ruslan; Vavilova, Evgeniya; Khairuzhdinov, Iskander; Salikhov, Kev; Voronkova, Violeta; Abdulmalic, Mohammad A.; Meva, Francois E.; Weheabby, Saddam; Rüffer, Tobias; Büchner, Bernd; Kataev, Vladislav
    We have investigated with the pulsed ESR technique at X- and Q-band frequencies the coherence and relaxation of Cu spins S = 1/2 in single crystals of diamagnetically diluted mononuclear [n-Bu4N]2[Cu(opba)] (1%) in the host lattice of [n-Bu4N]2[Ni(opba)] (99%, opba = o-phenylenebis(oxamato)) and of diamagnetically diluted mononuclear [n-Bu4N]2[Cu(opbon-Pr2)] (1%) in the host lattice of [n-Bu4N]2[Ni(opbon-Pr2)] (99%, opbon-Pr2 = o-phenylenebis(N(propyl)oxamidato)). For that we have measured the electron spin dephasing time Tm at different temperatures with the two-pulse primary echo and with the special Carr–Purcell–Meiboom–Gill (CPMG) multiple microwave pulse sequence. Application of the CPMG protocol has led to a substantial increase of the spin coherence lifetime in both complexes as compared to the primary echo results. It shows the efficiency of the suppression of the electron spin decoherence channel in the studied complexes arising due to spectral diffusion induced by a random modulation of the hyperfine interaction with the nuclear spins. We argue that this method can be used as a test for the relevance of the spectral diffusion for the electron spin decoherence. Our results have revealed a prominent role of the opba4– and opbon-Pr24– ligands for the dephasing of the Cu spins. The presence of additional 14N nuclei and protons in [Cu(opbon-Pr2)]2– as compared to [Cu(opba)]2– yields significantly shorter Tm times. Such a detrimental effect of the opbon-Pr24− ligands has to be considered when discussing a potential application of the Cu(II)−(bis)oxamato and Cu(II)−(bis)oxamidato complexes as building blocks of more complex molecular structures in prototype spintronic devices. Furthermore, in our work we propose an improved CPMG pulse protocol that enables elimination of unwanted echoes that inevitably appear in the case of inhomogeneously broadened ESR spectra due to the selective excitation of electron spins.
  • Item
    (Metallo)porphyrins for potential materials science applications
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-8-29) Smykalla, Lars; Mende, Carola; Fronk, Michael; Siles, Pablo F.; Hietschold, Michael; Salvan, Georgeta; Zahn, Dietrich R.T.; Schmidt, Oliver G.; Rüffer, Tobias; Lang, Heinrich
    The bottom-up approach to replace existing devices by molecular-based systems is a subject that attracts permanently increasing interest. Molecular-based devices offer not only to miniaturize the device further, but also to benefit from advanced functionalities of deposited molecules. Furthermore, the molecules itself can be tailored to allow via their self-assembly the potential fabrication of devices with an application potential, which is still unforeseeable at this time. Herein, we review efforts to use discrete (metallo)porphyrins for the formation of (sub)monolayers by surface-confined polymerization, of monolayers formed by supramolecular recognition and of thin films formed by sublimation techniques. Selected physical properties of these systems are reported as well. The application potential of those ensembles of (metallo)porphyrins in materials science is discussed.
  • Item
    Synthesis, spectroscopic characterization and thermogravimetric analysis of two series of substituted (metallo)tetraphenylporphyrins
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-6-2) Al-Shewiki, Rasha K.; Mende, Carola; Buschbeck, Roy; Siles, Pablo F.; Schmidt, Oliver G.; Rüffer, Tobias; Lang, Heinrich
    Subsequent treatment of H2TPP(CO2H)4 (tetra(p-carboxylic acid phenyl)porphyrin, 1) with an excess of oxalyl chloride and HNR2 afforded H2TPP(C(O)NR2)4 (R = Me, 2; iPr, 3) with yields exceeding 80%. The porphyrins 2 and 3 could be converted to the corresponding metalloporphyrins MTPP(C(O)NR2)4 (R = Me/iPr for M = Zn (2a, 3a); Cu (2b, 3b); Ni (2c, 3c); Co (2d, 3d)) by the addition of 3 equiv of anhydrous MCl2 (M = Zn, Cu, Ni, Co) to dimethylformamide solutions of 2 and 3 at elevated temperatures. Metalloporphyrins 2a–d and 3a–d were obtained in yields exceeding 60% and have been, as well as 2 and 3, characterized by elemental analysis, electrospray ionization mass spectrometry (ESIMS) and IR and UV–vis spectroscopy. Porphyrins 2, 2a–d and 3, 3a–d are not suitable for organic molecular beam deposition (OMBD), which is attributed to their comparatively low thermal stability as determined by thermogravimetric analysis (TG) of selected representatives.
  • Item
    Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings
    (Columbus, Ohio : American Chemical Society, 2017) Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J.; Rodriguez-Emmenegger, Cesar
    Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.
  • Item
    Probing the magnetic superexchange couplings between terminal CuII ions in heterotrinuclear bis(oxamidato) type complexes
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017-4-6) Abdulmalic, Mohammad A.; Weheabby, Saddam; Meva, Francois E.; Aliabadi, Azar; Kataev, Vladislav; Büchner, Bernd; Schleife, Frederik; Kersting, Berthold; Rüffer, Tobias
    The reaction of one equivalent of [n-Bu4N]2[Ni(opboR2)] with two equivalents of [Cu(pmdta)(X)2] afforded the heterotrinuclear CuIINiIICuII containing bis(oxamidato) type complexes [Cu2Ni(opboR2)(pmdta)2]X2 (R = Me, X = NO3– (1); R = Et, X = ClO4– (2); R = n-Pr, X = NO3– (3); opboR2 = o-phenylenebis(NR-substituted oxamidato); pmdta = N,N,N’,N”,N”-pentamethyldiethylenetriamine). The identities of the heterotrinuclear complexes 1–3 were established by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction studies, which revealed the cationic complex fragments [Cu2Ni(opboR2)(pmdta)2]2+ as not involved in any further intermolecular interactions. As a consequence thereof, the complexes 1–3 possess terminal paramagnetic [Cu(pmdta)]2+ fragments separated by [NiII(opboR2)]2– bridging units representing diamagnetic SNi = 0 states. The magnetic field dependence of the magnetization M(H) of 1–3 at T = 1.8 K has been determined and is shown to be highly reproducible with the Brillouin function for an ideal paramagnetic spin = 1/2 system, verifying experimentally that no magnetic superexchange couplings exists between the terminal paramagnetic [Cu(pmdta)]2+ fragments. Susceptibility measurements versus temperature of 1–3 between 1.8–300 K were performed to reinforce the statement of the absence of magnetic superexchange couplings in these three heterotrinuclear complexes.