Search Results

Now showing 1 - 8 of 8
  • Item
    CHASE-PL—Future Hydrology Data Set: Projections of Water Balance and Streamflow for the Vistula and Odra Basins, Poland
    (Basel : MDPI, 2017) Piniewski, Mikołaj; Szcześniak, Mateusz; Kardel, Ignacy
    There is considerable concern that the water resources of Central and Eastern Europe region can be adversely affected by climate change. Projections of future water balance and streamflow conditions can be obtained by forcing hydrological models with the output from climate models. In this study, we employed the SWAT hydrological model driven with an ensemble of nine bias-corrected EURO-CORDEX climate simulations to generate future hydrological projections for the Vistula and Odra basins in two future horizons (2024–2050 and 2074–2100) under two Representative Concentration Pathways (RCPs). The data set consists of three parts: (1) model inputs; (2) raw model outputs; (3) aggregated model outputs. The first one allows the users to reproduce the outputs or to create the new ones. The second one contains the simulated time series of 10 variables simulated by SWAT: precipitation, snow melt, potential evapotranspiration, actual evapotranspiration, soil water content, percolation, surface runoff, baseflow, water yield and streamflow. The third one consists of the multi-model ensemble statistics of the relative changes in mean seasonal and annual variables developed in a GIS format. The data set should be of interest of climate impact scientists, water managers and water-sector policy makers. In any case, it should be noted that projections included in this data set are associated with high uncertainties explained in this data descriptor paper.
  • Item
    Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance
    (Basel : MDPI, 2017-3-29) Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor
    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving.
  • Item
    The Influence of the Composition of Ru100−xAlx (x = 50, 55, 60, 67) Thin Films on Their Thermal Stability
    (Basel : MDPI, 2017-3-10) Seifert, Marietta; Rane, Gayatri K.; Oswald, Steffen; Menzel, Siegfried B.; Gemming, Thomas
    RuAl thin films possess a high potential as a high temperature stable metallization for surface acoustic wave devices. During the annealing process of the Ru-Al films, Al2O3 is formed at the surface of the films even under high vacuum conditions, so that the composition of a deposited Ru50Al50 film is shifted to a Ru-rich alloy. To compensate for this effect, the Al content is systematically increased during the deposition of the Ru-Al films. Three Al-rich alloys—Ru45Al55, Ru40Al60 and Ru33Al67—were analyzed concerning their behavior after high temperature treatment under high vacuum and air conditions in comparison to the initial Ru50Al50 sample. Although the films’ cross sections show a more homogeneous structure in the case of the Al-rich films, the RuAl phase formation is reduced with increasing Al content.
  • Item
    Unusual Enhancement of Doxorubicin Activity on Co-Delivery with Polyhedral Oligomeric Silsesquioxane (POSS)
    (Basel : MDPI, 2017) Sobierajska, Ewelina; Konopka, Malgorzata; Janaszewska, Anna; Piorecka, Kinga; Blauz, Andrzej; Klajnert-Maculewicz, Barbara; Stanczyk, Maciej; Stanczyk, Wlodzimierz A.
    Polyhedral oligomeric silsesquioxane (POSS), bearing eight 3-chloroammoniumpropyl substituents, was studied as a potential nanocarrier in co-delivery systems with doxorubicin (DOX). The toxicity of doxorubicin and POSS:DOX complexes at four different molar ratios (1:1; 1:2, 1:4, 1:8) towards microvascular endothelial cells (HMEC-1), breast cancer cells (MCF-7), and human cervical cancer endothelial cells (HeLa) was determined. The rate of penetration of the components into the cells, their cellular localization and the hydrodynamic diameter of the complexes was also determined. A cytotoxicity profile of POSS:DOX complexes indicated that the POSS:DOX system at the molar ratio of 1:8 was more effective than free DOX. Confocal images showed that DOX co-delivery with POSS allowed for more effective penetration of doxorubicin through the cell membrane. Taking all the results into account, it can be claimed that the polyhedral oligomeric silsesquioxane (T8-POSS) is a promising, complex nanocarrier for doxorubicin delivery.
  • Item
    Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells
    (Basel : MDPI, 2017-3-1) Hengst, Claudia; Menzel, Siegfried B.; Rane, Gayatri K.; Smirnov, Vladimir; Wilken, Karen; Leszczynska, Barbara; Fischer, Dustin; Prager, Nicole
    The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young’s modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grain–subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service.
  • Item
    Ion Beam Assisted Deposition of Thin Epitaxial GaN Films
    (Basel : MDPI, 2017-6-23) Rauschenbach, Bernd; Lotnyk, Andriy; Neumann, Lena; Poppitz, David; Gerlach, Jürgen W.
    The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy <100 eV) is capable to modify the characteristics of the growing film without generating a large number of irradiation induced defects. The nitrogen ion beam assisted molecular beam epitaxy (ion energy <25 eV) is used to deposit GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.
  • Item
    Effect of Graphite Nanoplate Morphology on the Dispersion and Physical Properties of Polycarbonate Based Composites
    (Basel : MDPI, 2017-5-18) Müller, Michael Thomas; Hilarius, Konrad; Liebscher, Marco; Lellinger, Dirk; Alig, Ingo; Pötschke, Petra
    The influence of the morphology of industrial graphite nanoplate (GNP) materials on their dispersion in polycarbonate (PC) is studied. Three GNP morphology types were identified, namely lamellar, fragmented or compact structure. The dispersion evolution of all GNP types in PC is similar with varying melt temperature, screw speed, or mixing time during melt mixing. Increased shear stress reduces the size of GNP primary structures, whereby the GNP aspect ratio decreases. A significant GNP exfoliation to individual or few graphene layers could not be achieved under the selected melt mixing conditions. The resulting GNP macrodispersion depends on the individual GNP morphology, particle sizes and bulk density and is clearly reflected in the composite's electrical, thermal, mechanical, and gas barrier properties. Based on a comparison with carbon nanotubes (CNT) and carbon black (CB), CNT are recommended in regard to electrical conductivity, whereas, for thermal conductive or gas barrier application, GNP is preferred.
  • Item
    Application of Matched-Filter Concepts to Unbiased Selection of Data in Pump-Probe Experiments with Free Electron Lasers
    (Basel : MDPI, 2017-06-16) Callegari, Carlo; Takanashi, Tsukasa; Fukuzawa, Hironobu; Motomura, Koji; Iablonskyi, Denys; Kumagai, Yoshiaki; Mondal, Subhendu; Tachibana, Tetsuya; Nagaya, Kiyonobu; Nishiyama, Toshiyuki; Matsunami, Kenji; Johnsson, Per; Piseri, Paolo; Sansone, Giuseppe; Dubrouil, Antoine; Reduzzi, Maurizio; Carpeggiani, Paolo; Vozzi, Caterina; Devetta, Michele; Faccialà, Davide; Calegari, Francesca; Castrovilli, Mattea; Coreno, Marcello; Alagia, Michele; Schütte, Bernd; Berrah, Nora; Plekan, Oksana; Finetti, Paola; Ferrari, Eugenio; Prince, Kevin; Ueda, Kiyoshi
    Pump-probe experiments are commonly used at Free Electron Lasers (FEL) to elucidate the femtosecond dynamics of atoms, molecules, clusters, liquids and solids. Maximizing the signal-to-noise ratio of the measurements is often a primary need of the experiment, and the aggregation of repeated, rapid, scans of the pump-probe delay is preferable to a single long-lasting scan. The limited availability of beamtime makes it impractical to repeat measurements indiscriminately, and the large, rapid flow of single-shot data that need to be processed and aggregated into a dataset, makes it difficult to assess the quality of a measurement in real time. In post-analysis it is then necessary to devise unbiased criteria to select or reject datasets, and to assign the weight with which they enter the analysis. One such case was the measurement of the lifetime of Intermolecular Coulombic Decay in the weakly-bound neon dimer. We report on the method we used to accomplish this goal for the pump-probe delay scans that constitute the core of the measurement; namely we report on the use of simple auto- and cross-correlation techniques based on the general concept of “matched filter”. We are able to unambiguously assess the signal-to-noise ratio (SNR) of each scan, which then becomes the weight with which a scan enters the average of multiple scans. We also observe a clear gap in the values of SNR, and we discard all the scans below a SNR of 0.45. We are able to generate an average delay scan profile, suitable for further analysis: in our previous work we used it for comparison with theory. Here we argue that the method is sufficiently simple and devoid of human action to be applicable not only in post-analysis, but also for the real-time assessment of the quality of a dataset.