Search Results

Now showing 1 - 10 of 30
  • Item
    Human health risk evaluation of a microwave-driven atmospheric plasma jet as medical device
    (Amsterdam [u.a.] : Elsevier, 2017) Lehmann, A.; Pietag, F.; Arnold, T.
    Purpose: The aim of this study was the characterisation of a microwave-driven atmospheric plasma jet (APJ) dedicated for medical applications. The scientific focus includes harmless sterilization of surfaces and therapeutic treatments in dentistry. Methodes: The plasma was investigated with respect to potential health risks for human beings, which could occur especially by the gas temperature, heat flow, patient leakage current, UV emission and ozone emission from the plasma jet, according to DIN SPEC 91315:2014-06 (General requirements for plasma sources in medicine) [1]. Results: The results of the experiments indicate a high potential of the plasma jet to be used as a medical device exhibiting low gas temperatures up to 34 °C. The calculated leakage currents are mostly below the 10 μA threshold. The limiting UV exposure duration for the APJ with a calculated maximum effective irradiance of 2.6 μW/cm2 is around 19 min, based on the exposure limits of the international commission on non-ionizing radiation protection guidelines (ICNIRP) [2]. A significant ozone concentration was observed mainly in the axial effluent gas flow. Ozone concentration strongly decreases with increasing distance from the plasma source exit nozzle. Conclusion: The investigated APJ exhibits physical properties that might not constitute health risks to humans, e.g. during treatment in dentistry. Thus, the APJ shows a high potential for application as a device in dental therapy.
  • Item
    Polyphenols delivery by polymeric materials: challenges in cancer treatment
    (Abingdon : Taylor & Francis Group, 2017-2-3) Vittorio, Orazio; Curcio, Manuela; Cojoc, Monica; Goya, Gerardo F.; Hampel, Silke; Iemma, Francesca; Dubrovska, Anna; Cirillo, Giuseppe
    Nanotechnology can offer different solutions for enhancing the therapeutic efficiency of polyphenols, a class of natural products widely explored for a potential applicability for the treatment of different diseases including cancer. While possessing interesting anticancer properties, polyphenols suffer from low stability and unfavorable pharmacokinetics, and thus suitable carriers are required when planning a therapeutic protocol. In the present review, an overview of the different strategies based on polymeric materials is presented, with the aim to highlight the strengths and the weaknesses of each approach and offer a platform of ideas for researchers working in the field.
  • Item
    Nanotopography mediated osteogenic differentiation of human dental pulp derived stem cells
    (Cambridge : RSC Publ., 2017) Bachhuka, Akash; Delalat, Bahman; Ghaemi, Soraya Rasi; Gronthos, Stan; Voelcker, Nicolas H.; Vasilev, Krasimir
    Advanced medical devices, treatments and therapies demand an understanding of the role of interfacial properties on the cellular response. This is particularly important in the emerging fields of cell therapies and tissue regeneration. In this study, we evaluate the role of surface nanotopography on the fate of human dental pulp derived stem cells (hDPSC). These stem cells have attracted interest because of their capacity to differentiate to a range of useful lineages but are relatively easy to isolate. We generated and utilized density gradients of gold nanoparticles which allowed us to examine, on a single substrate, the influence of nanofeature density and size on stem cell behavior. We found that hDPSC adhered in greater numbers and proliferated faster on the sections of the gradients with higher density of nanotopography features. Furthermore, greater surface nanotopography density directed the differentiation of hDPSC to osteogenic lineages. This study demonstrates that carefully tuned surface nanotopography can be used to manipulate and guide the proliferation and differentiation of these cells. The outcomes of this study can be important in the rational design of culture substrates and vehicles for cell therapies, tissue engineering constructs and the next generation of biomedical devices where control over the growth of different tissues is required.
  • Item
    Biocompatibility assessment of silk nanoparticles: hemocompatibility and internalization by human blood cells
    (New York, NY : Elsevier, 2017) Maitz, Manfred F.; Sperling, Claudia; Wongpinyochit, Thidarat; Herklotz, Manuela; Werner, Carsten; Seib, F. Philipp
    Many nanoparticles are designed for use as potential nanomedicines for parenteral administration. However, emerging evidence suggests that hemocompatibility is important, but is highly particle- and test-bed dependent. Thus, knowledge of bulk material properties does not predict the hemocompatibility of uncharacterized nanoparticles, including silk nanoparticles. This study compares the hemocompatibility of silk versus silica nanoparticles, using whole human blood under quasi-static and flow conditions. Substantial hemocompatibility differences are noted for some nanoparticles in quasi-static versus dynamic studies; i.e., the inflammatory response to silk nanoparticles is significantly lower under flow versus quasi-static conditions. Silk nanoparticles also have very low coagulant properties - an observation that scales from the macro- to the nano-level. These nanoparticle hemocompatibility studies are complemented by preliminary live cell measurements to evaluate the endocytosis and trafficking of nanoparticles in human blood cells. Overall, this study demonstrates that nanoparticle hemocompatibility is affected by several factors, including the test bed design.
  • Item
    German claims data analysis to assess impact of different intraocular lenses on posterior capsule opacification and related healthcare costs
    (Heidelberg : Springer, 2017) Kossack, Nils; Schindler, Christian; Weinhold, Ines; Hickstein, Lennart; Lehne, Moritz; Walker, Jochen; Neubauer, Aljoscha S.; Häckl, Dennis
    Aim: Cataract extraction is one of the most frequent surgeries in Germany. In most cases, the clouded natural lens is replaced by a hydrophobic or hydrophilic acrylic intraocular lens (IOL) implant. The most common long-term complication after cataract surgery is the development of a posterior capsule opacification (PCO). Although no precise real world data are available, published evidence suggests a lower risk for PCO development for hydrophobic acrylic IOLs compared to hydrophilic acrylic IOLs. Therefore, in the present study we assessed real world data on the impact of different IOL material types on the incidence of post-operative PCO treatment. Subject and methods: In this retrospective study, we included 3,025 patients who underwent cataract extraction and implantation of either an acrylic hydrophobic or hydrophilic IOL in 2010. We assessed clinical outcomes and direct costs in a 4-year follow-up period after cataract surgery from a statutory health insurance (SHI) perspective in Germany. Results: PCO that required capsulotomies occurred significantly (p < 0.0001) less frequent in patients who had received a hydrophobic IOL (31.57% of 2,078 patients) compared to the group with hydrophilic IOL implants (56.6% of 947 patients) and costs per patient for postoperative treatment in a 4-year follow-up were 50.03 € vs. 87.81 € (i.e. 75% higher in the latter group, p < 0.0001). Conclusion: Considering the high prevalence of cataract, the economic burden associated with adverse effects of cataract extraction is of great relevance for the German SHI. Hydrophobic lenses seem to be superior regarding both medical and economic results.
  • Item
    Thermo-responsive cell culture carrier: Effects on macrophage functionality and detachment efficiency
    (London : Sage, 2017) Rennert, Knut; Nitschke, Mirko; Wallert, Maria; Keune, Natalie; Raasch, Martin; Lorkowski, Stefan; Mosig, Alexander S.
    Harvesting cultivated macrophages for tissue engineering purposes by enzymatic digestion of cell adhesion molecules can potentially result in unintended activation, altered function, or behavior of these cells. Thermo-responsive polymer is a promising tool that allows for gentle macrophage detachment without artificial activation prior to subculture within engineered tissue constructs. We therefore characterized different species of thermo-responsive polymers for their suitability as cell substrate and to mediate gentle macrophage detachment by temperature shift. Primary human monocyte- and THP-1-derived macrophages were cultured on thermo-responsive polymers and characterized for phagocytosis and cytokine secretion in response to lipopolysaccharide stimulation. We found that both cell types differentially respond in dependence of culture and stimulation on thermo-responsive polymers. In contrast to THP-1 macrophages, primary monocyte–derived macrophages showed no signs of impaired viability, artificial activation, or altered functionality due to culture on thermo-responsive polymers compared to conventional cell culture. Our study demonstrates that along with commercially available UpCell carriers, two other thermo-responsive polymers based on poly(vinyl methyl ether) blends are attractive candidates for differentiation and gentle detachment of primary monocyte–derived macrophages. In summary, we observed similar functionality and viability of primary monocyte–derived macrophages cultured on thermo-responsive polymers compared to standard cell culture surfaces. While this first generation of custom-made thermo-responsive polymers does not yet outperform standard culture approaches, our results are very promising and provide the basis for exploiting the unique advantages offered by custom-made thermo-responsive polymers to further improve macrophage culture and recovery in the future, including the covalent binding of signaling molecules and the reduction of centrifugation and washing steps. Optimizing these and other benefits of thermo-responsive polymers could greatly improve the culture of macrophages for tissue engineering applications.
  • Item
    Assessing agreement between preclinical magnetic resonance imaging and histology: An evaluation of their image qualities and quantitative results
    (San Francisco, California, US : PLOS, 2017) Elschner, Cindy; Korn, Paula; Hauptstock, Maria; Schulz, Matthias C.; Range, Ursula; Jünger, Diana; Scheler, Ulrich
    One consequence of demographic change is the increasing demand for biocompatible materials for use in implants and prostheses. This is accompanied by a growing number of experimental animals because the interactions between new biomaterials and its host tissue have to be investigated. To evaluate novel materials and engineered tissues the use of nondestructive imaging modalities have been identified as a strategic priority. This provides the opportunity for studying interactions repeatedly with individual animals, along with the advantages of reduced biological variability and decreased number of laboratory animals. However, histological techniques are still the golden standard in preclinical biomaterial research. The present article demonstrates a detailed method comparison between histology and magnetic resonance imaging. This includes the presentation of their image qualities as well as the detailed statistical analysis for assessing agreement between quantitative measures. Exemplarily, the bony ingrowth of tissue engineered bone substitutes for treatment of a cleft-like maxillary bone defect has been evaluated. By using a graphical concordance analysis the mean difference between MRI results and histomorphometrical measures has been examined. The analysis revealed a slightly but significant bias in the case of the bone volume ðbiasHisto MRI: Bonevolume = 2: 40 %, p < 0: 005) and a clearly significant deviation for the remaining defect width ðbiasHisto MRI: Defectwidth = 6: 73 %, p 0: 005Þ: But the study although showed a considerable effect of the analyzed section position to the quantitative result. It could be proven, that the bias of the data sets was less originated due to the imaging modalities, but mainly on the evaluation of different slice positions. The article demonstrated that method comparisons not always need the use of an independent animal study, additionally.
  • Item
    Effect on healthcare utilization and costs of spinal manual therapy for acute low back pain in routine care: A propensity score matched cohort study
    (San Francisco, California, US : PLOS, 2017) Walker, Jochen; Mertens, Ulf Kai; Schmidt, Carsten Oliver; Chenot, Jean-François
    Spinal manual therapy (SMT) is a popular treatment option for low back pain (LBP). The aim of our analysis was to evaluate the effects of manual therapy delivered by general practitioners and ambulatory orthopedic surgeons in routine care on follow up consultations, sick leave, health service utilization and costs for acute LBP compared to matched patients not receiving manual therapy. This is a propensity score matched cohort study based on health claims data. We identified a total of 113.652 adult patients with acute LBP and no coded red flags of whom 21.021 (18%) received SMT by physicians. In the final analysis 17.965 patients in each group could be matched. Balance on patients' coded characteristics, comorbidity and prior health service utilization was achieved. The provision of SMT for acute LBP had no relevant impact on follow up visits and days of sick leave for LBP in the index billing period and the following year. SMT was associated with a higher proportion of imaging studies for LBP (30.6% vs. 23%, SMD: 0.164 [95% CI 0.143-0.185]). SMT did not lead to meaningful savings by replacing other health services for LBP. SMT for acute non-specific LBP in routine care was not clinically meaningful effective to reduce sick leave and reconsultation rates compared to no SMT and did not lead to meaningful savings by replacing other health services from the perspective of health insurance. This does not imply that SMT is ineffective but might reflect a problem with selection of suitable patients and the quality and quantity of SMT in routine care. National Manual Medicine societies should state clearly that imaging is not routinely needed prior to SMT in patients with low suspicion of presence of red flags and monitor the quality of provided services.
  • Item
    Toxicity and Immunogenicity in Murine Melanoma following Exposure to Physical Plasma-Derived Oxidants
    (Austin, Tex. : Landes Bioscience, 2017) Bekeschus, Sander; Rödder, Katrin; Fregin, Bob; Otto, Oliver; Lippert, Maxi; Weltmann, Klaus-Dieter; Wende, Kristian; Schmidt, Anke; Gandhirajan, Rajesh Kumar
    Metastatic melanoma is an aggressive and deadly disease. Therapeutic advance has been achieved by antitumor chemo- and radiotherapy. These modalities involve the generation of reactive oxygen and nitrogen species, affecting cellular viability, migration, and immunogenicity. Such species are also created by cold physical plasma, an ionized gas capable of redox modulating cells and tissues without thermal damage. Cold plasma has been suggested for anticancer therapy. Here, melanoma cell toxicity, motility, and immunogenicity of murine metastatic melanoma cells were investigated following plasma exposure in vitro. Cells were oxidized by plasma, leading to decreased metabolic activity and cell death. Moreover, plasma decelerated melanoma cell growth, viability, and cell cycling. This was accompanied by increased cellular stiffness and upregulation of zonula occludens 1 protein in the cell membrane. Importantly, expression levels of immunogenic cell surface molecules such as major histocompatibility complex I, calreticulin, and melanocortin receptor 1 were significantly increased in response to plasma. Finally, plasma treatment significantly decreased the release of vascular endothelial growth factor, a molecule with importance in angiogenesis. Altogether, these results suggest beneficial toxicity of cold plasma in murine melanomas with a concomitant immunogenicity of potential interest in oncology.
  • Item
    Oxidants and Redox Signaling: Perspectives in Cancer Therapy, Inflammation, and Plasma Medicine
    (Austin, Tex. : Landes Bioscience, 2017) Bekeschus, Sander; Bräutigam, Lars; Wende, Kristian; Hanschmann, Eva-Maria
    [No abstract available]