Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

The LEGATO cross-disciplinary integrated ecosystem service research framework: an example of integrating research results from the analysis of global change impacts and the social, cultural and economic system dynamics of irrigated rice production

2017, Spangenberg, J.H., Beaurepaire, A.L., Bergmeier, E., Burkhard, B., van Chien, H., Cuong, L.Q., Görg, C., Grescho, V., Hai, L.H., Heong, K.L., Horgan, F.G., Hotes, S., Klotzbücher, A., Klotzbücher, T., Kühn, I., Langerwisch, F., Marion, G., Moritz, R.F.A., Nguyen, Q.A., Ott, J., Sann, C., Sattler, C., Schädler, M., Schmidt, A., Tekken, V., Thanh, T.D., Thonicke, K., Türke, M., Václavík, T., Vetterlein, D., Westphal, C., Wiemers, M., Settele, J.

In a cross-disciplinary project (LEGATO) combining inter- and transdisciplinary methods, we quantify the dependency of rice-dominated socio-ecological systems on ecosystem functions (ESF) and the ecosystem services (ESS) the integrated system provides. In the collaboration of a large team including geo- and bioscientists, economists, political and cultural scientists, the mutual influences of the biological, climate and soil conditions of the agricultural area and its surrounding natural landscape have been analysed. One focus was on sociocultural and economic backgrounds, another on local as well as regional land use intensity and biodiversity, and the potential impacts of future climate and land use change. LEGATO analysed characteristic elements of three service strands defined by the Millennium Ecosystem Assessment (MA): (a) provisioning services: nutrient cycling and crop production; (b) regulating services: biocontrol and pollination; and (c) cultural services: cultural identity and aesthetics. However, in line with much of the current ESS literature, what the MA called supporting services is treated as ESF within LEGATO. As a core output, LEGATO developed generally applicable principles of ecological engineering (EE), suitable for application in the context of future climate and land use change. EE is an emerging discipline, concerned with the design, monitoring and construction of ecosystems and aims at developing strategies to optimise ecosystem services through exploiting natural regulation mechanisms instead of suppressing them. Along these lines LEGATO also aims to create the knowledge base for decision-making for sustainable land management and livelihoods, including the provision of the corresponding governance and management strategies, technologies and system solutions.

Loading...
Thumbnail Image
Item

Is dry soil planting an adaptation strategy for maize cultivation in semi-arid Tanzania?

2017, Lana, Marcos A., Vasconcelos, Ana Carolina F., Gornott, Christoph, Schaffert, Angela, Bonatti, Michelle, Volk, Johanna, Graef, Frieder, Kersebaum, Kurt Christian, Sieber, Stefan

Agriculture has the greatest potential to lift the African continent out of poverty and alleviate hunger. Among the countries in sub-Saharan Africa, Tanzania has an abundance of natural resources and major agricultural potential. However, one of the most important constraints facing Tanzania’s agricultural sector is the dependence on unreliable and irregular weather, including rainfall. A strategy to cope with climate uncertainty in semi-arid regions is to proceed with the sowing of the crop before the onset of the rainy season. The advantage is that when the rains start, seeds are already in the soil and can begin immediately the process of germination. The objective of this paper was to assess the effectiveness of dry-soil planting for maize as an adaptation strategy in the context of a changing climate in Dodoma, a semi-arid region in Tanzania. For this assessment, the DSSAT crop model was used in combination with climate scenarios based on representative concentration pathways. A probability of crop failure of more than 80% can be expected when sowing occurs during the planting window (of 21 days) starting on 1st November. The next planting window we assessed, starting on 23rd November (which was still before the onset of rain), presented significantly lower probabilities of crop failure, indicating that sowing before the onset of the rainy season is a suitable adaptation strategy. Results also indicated that, despite not reaching the highest maize grain yields, fields prepared for dry-soil planting still produced adequate yields. The cultivation of several fields using the dry planting method is a strategy farmers can use to cope with low rainfall conditions, since it increases the chances of harvesting at least some of the cultivated fields. We conclude that dry-soil planting is a feasible and valid technique, even in scenarios of climate change, in order to provide acceptable maize yields in semi-arid Tanzania.