Search Results

Now showing 1 - 10 of 13
Loading...
Thumbnail Image
Item

Effect of additives on MWCNT dispersion and electrical percolation in polyamide 12 composites

2017, Socher, Robert, Krause, Beate, Pötschke, Petra

The aim of this study was to decrease the electrical percolation threshold of multiwalled carbon nanotubes (MWCNTs) in a polyamide 12 matrix by the use of additives. Different kinds of additives were selected which either interact with the π-system of the MWCNTs (imidazolium based ionic liquid (IL) and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)) or improve the MWCNT wettability (cyclic butylene terephthalate, CBT). The composites were melt mixed using a DACA microcompounder. The electrical percolation threshold for PA12/MWCNT without additives, measured on compression molded plates, was found between 2.0 and 2.25 wt%. With all used additives, a significant reduction of the electrical percolation threshold could be achieved. Whereas the addition of IL and CBT resulted in MWCNT percolation at around 1.0 wt%, a slightly higher percolation threshold between 1.0 and 1.5 wt% was found for PTCDA as an additive. Interestingly, the electrical resistivity at higher loadings was decreased by nearly two decades when using CBT and one decade after application of PTCDA, whereas IL did not contribute to lower values in this range. In all cases macrodispersion as assessed by light microscopy was not improved and even worse as compared to non-modified composites. In summary, the results illustrate that these kinds of additives are able to improve the performance of PA12 based MWCNT nanocomposites.

Loading...
Thumbnail Image
Item

Influence of mixing conditions on carbon nanotube shortening and curling in polycarbonate composites

2017, Krause, Beate, Carval, J., Pötschke, Petra

Polycarbonate composites containing multiwalled carbon nanotubes (MWCNTs, 0.2-2.0 wt%) were melt mixed in small scale at different conditions of screw speed and mixing time to vary the specific mechanical energy (SME) input between 0.4 and 4.0 kWh/kg. Next to the electrical properties of compression molded plates and the MWCNT macrodispersion also the nanotube length and shape were analyzed. For this, the matrix of the composites with 0.75 wt% MWCNT loading was dissolved and the remaining nanotubes were investigated using TEM. It was found that with increasing SME input the number of remaining CNT agglomerates decreases. The MWCNT length decreased from initially about 1.4 micrometers towards 350 nanometers at a SME of 4 kWh/kg and the mean curling values were also reduced. The electrical percolation threshold increases with SME from about 0.4 wt% to 0.6 wt%.

Loading...
Thumbnail Image
Item

On wireless channel parameters for key generation in industrial environments

2017, Kreiser, Dan, Dyka, Zoya, Kornemann, Stephan, Wittke, Christian, Kabin, Ievgen, Stecklina, Oliver, Langendoerfer, Peter

The advent of industry 4.0 with its idea of individualized mass production will significantly increase the demand for more flexibility on the production floor. Wireless communication provides this type of flexibility but puts the automation system at risk as potential attackers now can eavesdrop or even manipulate the messages exchanged even without getting access to the premises of the victim. Cryptographic means can prevent such attacks if applied properly. One of their core components is the distribution of keys. The generation of keys from channel parameters seems to be a promising approach in comparison to classical approaches based on public key cryptography as it avoids computing intense operations for exchanging keys. In this paper we investigated key generation approaches using channel parameters recorded in a real industrial environment. Our key results are that the key generation may take unpredictable long and that the resulting keys are of low quality with respect to the test for randomness we applied.

Loading...
Thumbnail Image
Item

Impact of synthesis temperature on structure of carbon nanotubes and morphological and electrical characterization of their polymeric nanocomposites

2017, Arjmand, Mohammad, Mirkhani, Seyyed Alireza, Pötschke, Petra, Krause, Beate, Sundararaj, Uttandaraman

Carbon nanotubes (CNTs) were synthesized by chemical vapor deposition technique at a broad range of temperatures, i.e. 550°C to 950°C (at 100°C intervals). CNTs were synthesized by flowing source and carrier gases (ethane, argon, and hydrogen) over Fe catalyst in a quartz tubular reactor. CNTs were melt mixed with a polyvinylidene fluoride (PVDF) matrix in a miniature mixer. The resulting nanocomposites were then compression molded, and electrically and morphologically characterized. Moreover, a wide range of characterization techniques were employed to obtain detailed information about the physical and morphological characteristics of CNTs. It was surprisingly observed that, despite the ascending trend of powder conductivity with the synthesis temperature, the nanocomposites made with (CNT)650°C had significantly lower percolation threshold (around 0.4wt.%) and higher electromagnetic interference shielding (20.3dB over the X-band for 1.1mm thickness) compared to the other temperatures. The characterization of nanofillers showed that the synthesis yield and quality of (CNT)650°C were highly superior to the other types of CNTs. At 850°C and 950°C, most of the synthesized carbonaceous materials formed graphitic structures around the sintered catalyst particles. It was also observed that the dispersion state of (CNT)650°C within the PVDF matrix was much better than that of CNTs synthesized at the other temperatures. Superior electrical properties of (CNT)650°C nanocomposites can be attributed to a combination of high synthesis yield, low diameter and decent quality of CNTs coupled with good state of dispersion within the PVDF matrix.

Loading...
Thumbnail Image
Item

Influence of graphite and SEBS addition on thermal and electrical conductivity and mechanical properties of polypropylene composites

2017, Krause, Beate, Cohnen, A., Pötschke, Petra, Hickmann, T., Koppler, D., Proksch, B., Kersting, T., Hopmann, C.

In this study, composites based on polypropylene (PP) and different graphite fillers were melt mixed using small scale microcompounder Xplore DSM15 as well as lab-scale co-rotating twin screw extruder Coperion ZSK26Mc. The measurements of the electrical and thermal conductivity as well as mechanical properties of the composites were performed on pressed plates. It was found that the addition of graphite powders having different particle size distributions leads to different increases of the thermal conductivity. For synthetic graphite, the PP composites filled with TIMCAL Timrex® KS500 reached the highest value of thermal conductivity of 0.52 W/(m·K) at 10 vol% loading, whereas this composite was not electrical conductive. Furthermore, the influence of a styrene-ethylene-butylene-styrene block copolymer (SEBS) based impact modifier on the mechanical properties of PP filled with 80 wt% of different synthetic graphites was investigated. For that the proportion of SEBS in the PP component was varied systematically. The conductivities were influenced by the type of graphite and the content of impact modifier. The results indicate that the impact strength of the composite containing TIMCAL Timrex® KS300-1250 can be increased by approx. 100 % when replacing 50 wt% of the PP component by SEBS.

Loading...
Thumbnail Image
Item

Graphene Derivatives Doped with Nickel Ferrite Nanoparticles as Excellent Microwave Absorbers in Soft Nanocomposites

2017, Pawar, Shital Patangrao, Gandi, Mounika, Arief, Injamamul, Krause, Beate, Pötschke, Petra, Bose, Suryasarathi

Herein, we report the development of soft polymeric composites containing multiwall carbon nanotubes (MWNTs, 1–3 wt%) and graphene derivatives doped with nickel ferrite nanoparticles (rGO@NF, 10 wt%) as lightweight microwave absorbers. The soft nanocomposites were designed using melt-mixed blends of varying compositions of PC (polycarbonate) and SAN (poly styrene acrylonitrile) by compartmentalized functional nanoparticles in one of the components of the blend (here PC). Maximum attenuation of the incoming electromagnetic (EM) radiation mainly through absorption was achieved. The hetero-dielectric media at microscopic length scale in the PC component provided large interfaces which facilitated multiple scattering thereby attenuating the incoming EM radiation. This strategy of positioning the functional nanoparticles in one of the components in the blends resulted in significantly enhanced shielding effectiveness (SE), at any given concentration of MWNTs, in contrast to PC based composites. This enhancement in SE was realized in the special morphology of the bicomponent PC/SAN=60/40 wt% blends where both the components are continuous. The enhanced SE in co-continuous blends is due to combined effect of enhanced electrical conductivity (more precisely due to interconnected network of the nanoparticles) and the presence of a hetero-dielectric media generating large scattering interfaces. For instance, the PC/SAN (60/40 wt%) co-continuous blend containing 3 wt% MWNTs and 10 wt% rGO@NF manifested in a total shielding effectiveness (SET) of −32.3 dB (i. e. more than 99.9 % attenuation of incoming EM radiation) mainly through absorption.

Loading...
Thumbnail Image
Item

PP/SWCNT composites modified with ionic liquid

2017, Krause, Beate, Predtechenskiy, M., Ilin, E., Pötschke, Petra

Polypropylene composites filled with singlewalled carbon nanotubes TUBALL® (SWCNTs) were studied with regard to the effect of ionic liquid (IL) addition in different SWCNT:IL ratios (1:0.5 - 1:6). The incorporation of IL leads to a decrease of the electrical percolation threshold and already at 0.025 wt% SWCNT loading reduced resistivity values can be observed. However, the SWCNT macro dispersion, already relatively good without IL, was not affected by the IL incorporation. In addition, the nucleation effect of the SWCNT in polypropylene is not influenced when simultaneously adding IL, whereas the crystallization enthalpy slightly decreases with its addition.

Loading...
Thumbnail Image
Item

Polymer - Carbon nanotube composites for thermoelectric applications

2017, Luo, J., Krause, Beate, Pötschke, Petra

The thermoelectric (TE) performance of electrically conductive thermoplastic composites prepared by melt mixing was investigated. A cost effective widely used in industry polymer, namely polypropylene (PP), was chosen as the matrix to fabricate the composites. Singlewalled carbon nanotubes (SWCNTs), the amount (2 wt%) of which was selected to be above the electrical percolation threshold (< 0.2 wt%), were used to form an electrical conducting network. Besides as-produced SWCNTs plasma modified tubes were employed to study the influence of the functionalization on the morphology, dispersion and TE properties of the PP composites. In addition, melt processing conditions, e.g. temperature, rotation speed, and time during mixing in a small-scale compounder were varied. Furthermore, an ionic liquid (IL, 1-methyl-3-octylimidazolium tetrafluoroborate) was used as a processing additive during melt mixing, which was confirmed to improve the electrical conductivity of the composites. Simultaneous increase in the Seebeck coefficient up to a value of 64 μV/K was recorded, leading to a much better power factor of 0.26 μW/(m·K2) compared to composites without IL. This melt mixing strategy opens new avenues for solvent-free, large scale fabrication of polymer based TE materials.

Loading...
Thumbnail Image
Item

Polypropylene-based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: Switching from p-type to n-type by the addition of polyethylene glycol

2017, Luo, Jinji, Cerretti, Giacomo, Krause, Beate, Zhang, Long, Otto, Thomas, Jenschke, Wolfgang, Ullrich, Mathias, Tremel, Wolfgang, Voit, Brigitte, Pötschke, Petra

The thermoelectric properties of melt processed conductive nanocomposites consisting of an insulating polypropylene (PP) matrix filled with singlewalled carbon nanotubes (CNTs) and copper oxide (CuO) were evaluated. An easy and cheap route to switch p-type composites into n-type was developed by adding polyethylene glycol (PEG) during melt mixing. At the investigated CNT concentrations of 0.8 wt% and 2 wt% (each above the electrical percolation threshold of ∼0.1 wt%), and a fixed CuO content of 5 wt%, the PEG addition converted p-type composites (positive Seebeck coefficient (S)) into n-type (negative S). PEG was also found to improve the filler dispersion inside the matrix. Two composites were prepared: P-type polymer/CNT composites with high S (up to 45 μV/K), and n-type composites (with S up to −56 μV/K) through the addition of PEG. Two prototypes with 4 and 49 thermocouples of these p- and n-type composites were fabricated, and delivered an output voltage of 21 mV and 110 mV, respectively, at a temperature gradient of 70 K.

Loading...
Thumbnail Image
Item

Thermal conductivity of hybrid filled HDPE nanocomposites

2017, Müller, M. T., Krause, Beate, Kretzschmar, B., Jahn, I., Pötschke, Petra

In this study composite materials based on high-density polyethylene (HDPE) with fillers containing nanostructures were prepared using melt mixing. Vapour Grown Carbon Fibers (VGCF), multiwalled carbon nanotubes (MWCNT) of the types Baytubes® C150P and Nanocyl™ NC7000, anthracite powder, microsilica, organoclay and expanded graphite (EG) as well as mixtures of these fillers were used. The amount and mixing ratios of the hybrid filled systems have been varied to determine their effects on the achievable level of thermal conductivity as measured on compression molded plates. The filler dispersion and phase adhesion were studied using scanning electron microscopy. When limiting the maximum filler content to 10 wt%, the highest enhancement in thermal conductivity by 166% was found for VGCF followed by a 1:1 filler combination of VGCF with EG (148%).