Search Results

Now showing 1 - 10 of 17
  • Item
    Primary versus secondary contributions to particle number concentrations in the European boundary layer
    (München : European Geopyhsical Union, 2011) Reddington, C.L.; Carslaw, K.S.; Spracklen, D.V.; Frontoso, M.G.; Collins, L.; Merikanto, J.; Minikin, A.; Hamburger, T.; Coe, H.; Kulmala, M.; Aalto, P.; Flentje, H.; Plass-Dülmer, C.; Birmili, W.; Wiedensohler, A.; Wehner, B.; Tuch, T.; Sonntag, A.; O'Dowd, C.D.; Jennings, S.G.; Dupuy, R.; Baltensperger, U.; Weingartner, E.; Hansson, H.-C.; Tunved, P.; Laj, P.; Sellegri, K.; Boulon, J.; Putaud, J.-P.; Gruening, C.; Swietlicki, E.; Roldin, P.; Henzing, J.S.; Moerman, M.; Mihalopoulos, N.; Kouvarakis, G.; Ždímal, V.; Zíková, N.; Marinoni, A.; Bonasoni, P.; Duchi, R.
    It is important to understand the relative contribution of primary and secondary particles to regional and global aerosol so that models can attribute aerosol radiative forcing to different sources. In large-scale models, there is considerable uncertainty associated with treatments of particle formation (nucleation) in the boundary layer (BL) and in the size distribution of emitted primary particles, leading to uncertainties in predicted cloud condensation nuclei (CCN) concentrations. Here we quantify how primary particle emissions and secondary particle formation influence size-resolved particle number concentrations in the BL using a global aerosol microphysics model and aircraft and ground site observations made during the May 2008 campaign of the European Integrated Project on Aerosol Cloud Climate Air Quality Interactions (EUCAARI). We tested four different parameterisations for BL nucleation and two assumptions for the emission size distribution of anthropogenic and wildfire carbonaceous particles. When we emit carbonaceous particles at small sizes (as recommended by the Aerosol Intercomparison project, AEROCOM), the spatial distributions of campaign-mean number concentrations of particles with diameter >50 nm (N50) and >100 nm (N100) were well captured by the model (R2≥0.8) and the normalised mean bias (NMB) was also small (−18% for N50 and −1% for N100). Emission of carbonaceous particles at larger sizes, which we consider to be more realistic for low spatial resolution global models, results in equally good correlation but larger bias (R2≥0.8, NMB = −52% and −29%), which could be partly but not entirely compensated by BL nucleation. Within the uncertainty of the observations and accounting for the uncertainty in the size of emitted primary particles, BL nucleation makes a statistically significant contribution to CCN-sized particles at less than a quarter of the ground sites. Our results show that a major source of uncertainty in CCN-sized particles in polluted European air is the emitted size of primary carbonaceous particles. New information is required not just from direct observations, but also to determine the "effective emission size" and composition of primary particles appropriate for different resolution models.
  • Item
    Aerosol optical properties in the southeastern United States in summer - Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters
    (Katlenburg-Lindau : EGU, 2016) Brock, Charles A.; Wagner, Nicholas L.; Anderson, Bruce E.; Attwood, Alexis R.; Beyersdorf, Andreas; Campuzano-Jost, Pedro; Carlton, Annmarie G.; Day, Douglas A.; Diskin, Glenn S.; Gordon, Timothy D.; Jimenez, Jose L.; Lack, Daniel A.; Liao, Jin; Markovic, Milos Z.; Middlebrook, Ann M.; Ng, Nga L.; Perring, Anne E.; Richardson, Matthews S.; Schwarz, Joshua P.; Washenfelder, Rebecca A.; Welti, Andre; Xu, Lu; Ziemba, Luke D.; Murphy, Daniel M.
    Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013 in the southeastern United States (US). Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015). We use these 0–4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD) to changes in dry aerosol mass, relative humidity, mixed-layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation in these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH). For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry–climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of  ∼  25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental air masses in which an accumulation mode between 0.1–0.5 µm diameter dominates aerosol extinction.
  • Item
    A broad supersaturation scanning (BS2) approach for rapid measurement of aerosol particle hygroscopicity and cloud condensation nuclei activity
    (München : European Geopyhsical Union, 2016) Su, Hang; Cheng, Yafang; Ma, Nan; Wang, Zhibin; Wang, Xiaoxiang; Pöhlker, Mira L.; Nillius, Björn; Wiedensohler, Alfred; Pöschl, Ulrich
    The activation and hygroscopicity of cloud condensation nuclei (CCN) are key to the understanding of aerosol–cloud interactions and their impact on climate. They can be measured by scanning the particle size and supersaturation in CCN measurements. The scanning of supersaturation is often time-consuming and limits the temporal resolution and performance of CCN measurements. Here we present a new approach, termed the broad supersaturation scanning (BS2) method, in which a range of supersaturation is simultaneously scanned, reducing the time interval between different supersaturation scans. The practical applicability of the BS2 approach is demonstrated with nano-CCN measurements of laboratory-generated aerosol particles. Model simulations show that the BS2 approach may also be applicable for measuring CCN activation of ambient mixed particles. Due to its fast response and technical simplicity, the BS2 approach may be well suited for aircraft and long-term measurements. Since hygroscopicity is closely related to the fraction of organics/inorganics in aerosol particles, a BS2-CCN counter can also serve as a complementary sensor for fast detection/estimation of aerosol chemical compositions.
  • Item
    Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece
    (München : European Geopyhsical Union, 2012) Mamouri, R.E.; Papayannis, A.; Amiridis, V.; Müller, D.; Kokkalis, P.; Rapsomanikis, S.; Karageorgos, E.T.; Tsaknakis, G.; Nenes, A.; Kazadzis, S.; Remoundaki, E.
    A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project, which took place between 15–31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers that occurred on 20–21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius (reff), single-scattering albedo ω) and mean complex refractive index (m)) at selected heights in the 2–3 km height region. We found that reff was 0.14–0.4 (±0.14) μm, ω was 0.63–0.88 (±0.08) (at 532 nm) and m ranged from 1.44 (±0.10) + 0.01 (±0.01)i to 1.55 (±0.12) + 0.06 (±0.02)i, in good agreement (only for the reff values) with in situ aircraft measurements. The water vapor and temperature profiles were incorporated into the ISORROPIA II model to propose a possible in situ aerosol composition consistent with the retrieved m and ω values. The retrieved aerosol chemical composition in the 2–3 km height region gave a variable range of sulfate (0–60%) and organic carbon (OC) content (0–50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; the retrieved low ω value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sun photometer CIMEL data.
  • Item
    Atmospheric data over a solar cycle: No connection between galactic cosmic rays and new particle formation
    (München : European Geopyhsical Union, 2010) Kulmala, M.; Riipinen, I.; Nieminen, T.; Hulkkonen, M.; Sogacheva, L.; Manninen, H.E.; Paasonen, P.; Petäjä, T.; Dal Maso, M.; Aalto, P.P.; Viljanen, A.; Usoskin, I.; Vainio, R.; Mirme, S.; Mirme, A.; Minikin, A.; Petzold, A.; Hõrrak, U.; Plaß-Dülmer, C.; Birmili, W.; Kerminen, V.-M.
    Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996–2008) that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII). We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically significantly less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation events, and so for the connected aerosol-climate effects as well.
  • Item
    Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations
    (Katlenburg-Lindau : EGU, 2015) Ryder, C.L.; McQuaid, J.B.; Flamant, C.; Rosenberg, P.D.; Washington, R.; Brindley, H.E.; Highwood, E.J.; Marsham, J.H.; Parker, D.J.; Todd, M.C.; Banks, J.R.; Brooke, J.K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C.J.T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A.R.; Dorsey, J.R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.
    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse-mode size distributions and AERONET (AERosol Robotic NETwork) sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance.
  • Item
    CARIBIC aircraft measurements of Eyjafjallajökull volcanic clouds in April/May 2010
    (München : European Geopyhsical Union, 2012) Rauthe-Schöch, A.; Weigelt, A.; Hermann, M.; Martinsson, B.G.; Baker, A.K.; Heue, K.-P.; Brenninkmeijer, C.A.M.; Zahn, A.; Scharffe, D.; Eckhardt, S.; Stohl, A.; van Velthoven, P.F.J.
    The Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) project investigates physical and chemical processes in the Earth's atmosphere using a Lufthansa Airbus long-distance passenger aircraft. After the beginning of the explosive eruption of the Eyjafjallajökull volcano on Iceland on 14 April 2010, the first CARIBIC volcano-specific measurement flight was carried out over the Baltic Sea and Southern Sweden on 20 April. Two more flights followed: one over Ireland and the Irish Sea on 16 May and the other over the Norwegian Sea on 19 May 2010. During these three special mission flights the CARIBIC container proved its merits as a comprehensive flying laboratory. The elemental composition of particles collected over the Baltic Sea during the first flight (20 April) indicated the presence of volcanic ash. Over Northern Ireland and the Irish Sea (16 May), the DOAS system detected SO2 and BrO co-located with volcanic ash particles that increased the aerosol optical depth. Over the Norwegian Sea (19 May), the optical particle counter detected a strong increase of particles larger than 400 nm diameter in a region where ash clouds were predicted by aerosol dispersion models. Aerosol particle samples collected over the Irish Sea and the Norwegian Sea showed large relative enhancements of the elements silicon, iron, titanium and calcium. Non-methane hydrocarbon concentrations in whole air samples collected on 16 and 19 May 2010 showed a pattern of removal of several hydrocarbons that is typical for chlorine chemistry in the volcanic clouds. Comparisons of measured ash concentrations and simulations with the FLEXPART dispersion model demonstrate the difficulty of detailed volcanic ash dispersion modelling due to the large variability of the volcanic cloud sources, extent and patchiness as well as the thin ash layers formed in the volcanic clouds.
  • Item
    Observations of new particle formation in enhanced UV irradiance zones near cumulus clouds
    (München : European Geopyhsical Union, 2015) Wehner, B.; Werner, F.; Ditas, F.; Shaw, R.A.; Kulmala, M.; Siebert, H.
    During the CARRIBA (Cloud, Aerosol, Radiation and tuRbulence in the trade wInd regime over BArbados) campaign, the interaction between aerosol particles and cloud microphysical properties was investigated in detail, which also includes the influence of clouds on the aerosol formation. During two intensive campaigns in 2010 and 2011, helicopter-borne measurement flights were performed to investigate the thermodynamic, turbulent, microphysical, and radiative properties of trade-wind cumuli over Barbados. During these flights, 91 cases with increased aerosol particle number concentrations near clouds were detected. The majority of these cases are also correlated with enhanced irradiance in the ultraviolet (UV) spectral wavelength range. This enhancement reaches values up to a factor of 3.3 greater compared to background values. Thus, cloud boundaries provide a perfect environment for the production of precursor gases for new particle formation. Another feature of cloud edges is an increased turbulence, which may also enhance nucleation and particle growth. The observed events have a mean length of 100 m, corresponding to a lifetime of less than 300 s. This implies that particles with diameters of at least 7 nm grew several nanometers per minute, which corresponds to the upper end of values in the literature (Kulmala et al., 2004). Such high values cannot be explained by sulfuric acid alone; thus extremely low volatility organic compounds (ELVOCs) are probably involved here.
  • Item
    Evaluating BC and NOx emission inventories for the Paris region from MEGAPOLI aircraft measurements
    (München : European Geopyhsical Union, 2015) Petetin, H.; Beekmann, M.; Colomb, A.; van der Gon, H.A.C.Denier; Dupont, J.-C.; Honoré, C.; Michoud, V.; Morille, Y.; Perrussel, O.; Schwarzenboeck, A.; Sciare, J.; Wiedensohler, A.; Zhang, Q.J.
    High uncertainties affect black carbon (BC) emissions, and, despite its important impact on air pollution and climate, very few BC emissions evaluations are found in the literature. This paper presents a novel approach, based on airborne measurements across the Paris, France, plume, developed in order to evaluate BC and NOx emissions at the scale of a whole agglomeration. The methodology consists in integrating, for each transect, across the plume observed and simulated concentrations above background. This allows for several error sources (e.g., representativeness, chemistry, plume lateral dispersion) to be minimized in the model used. The procedure is applied with the CHIMERE chemistry-transport model to three inventories – the EMEP inventory and the so-called TNO and TNO-MP inventories – over the month of July 2009. Various systematic uncertainty sources both in the model (e.g., boundary layer height, vertical mixing, deposition) and in observations (e.g., BC nature) are discussed and quantified, notably through sensitivity tests. Large uncertainty values are determined in our results, which limits the usefulness of the method to rather strongly erroneous emission inventories. A statistically significant (but moderate) overestimation is obtained for the TNO BC emissions and the EMEP and TNO-MP NOx emissions, as well as for the BC / NOx emission ratio in TNO-MP. The benefit of the airborne approach is discussed through a comparison with the BC / NOx ratio at a ground site in Paris, which additionally suggests a spatially heterogeneous error in BC emissions over the agglomeration.
  • Item
    Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar
    (München : European Geopyhsical Union, 2016) Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Liberto, Luca Di; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs
    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ∼  50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ∼  10:00 LT – local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ∼  12:00 LT) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. Lidar estimates captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in situ results, using fixed lidar ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are consistent with values for continental aerosol particles that can be expected in this region.