Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Coal fly ash: Linking immersion freezing behavior and physicochemical particle properties

2018, Grawe, S., Augustin-Bauditz, S., Clemen, H.-C., Ebert, M., Eriksen Hammer, S., Lubitz, J., Reicher, N., Rudich, Y., Schneider, J., Staacke, R., Stratmann, F., Welti, A., Wex, H.

To date, only a few studies have investigated the potential of coal fly ash particles to trigger heterogeneous ice nucleation in cloud droplets. The presented measurements aim at expanding the sparse dataset and improving process understanding of how physicochemical particle properties can influence the freezing behavior of coal fly ash particles immersed in water. Firstly, immersion freezing measurements were performed with two single particle techniques, i.e., the Leipzig Aerosol Cloud Interaction Simulator (LACIS) and the SPectrometer for Ice Nuclei (SPIN). The effect of suspension time on the efficiency of the coal fly ash particles when immersed in a cloud droplet is analyzed based on the different residence times of the two instruments and employing both dry and wet particle generation. Secondly, two cold-stage setups, one using microliter sized droplets (Leipzig Ice Nucleation Array) and one using nanoliter sized droplets (WeIzmann Supercooled Droplets Observation on Microarray setup) were applied. We found that coal fly ash particles are comparable to mineral dust in their immersion freezing behavior when being dry generated. However, a significant decrease in immersion freezing efficiency was observed during experiments with wet-generated particles in LACIS and SPIN. The efficiency of wet-generated particles is in agreement with the cold-stage measurements. In order to understand the reason behind the deactivation, a series of chemical composition, morphology, and crystallography analyses (single particle mass spectrometry, scanning electron microscopy coupled with energy dispersive X-ray microanalysis, X-ray diffraction analysis) were performed with dry- and wet-generated particles. From these investigations, we conclude that anhydrous CaSO4 and CaO - which, if investigated in pure form, show the same qualitative immersion freezing behavior as observed for dry-generated coal fly ash particles - contribute to triggering heterogeneous ice nucleation at the particle-water interface. The observed deactivation in contact with water is related to changes in the particle surface properties which are potentially caused by hydration of CaSO4 and CaO. The contribution of coal fly ash to the ambient population of ice-nucleating particles therefore depends on whether and for how long particles are immersed in cloud droplets.

Loading...
Thumbnail Image
Item

Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke

2018, Haarig, M., Ansmann, A., Baars, H., Jimenez, C., Veselovskii, I., Engelmann, R., Althausen, D.

We present spectrally resolved optical and microphysical properties of western Canadian wildfire smoke observed in a tropospheric layer from 5-6.5 km height and in a stratospheric layer from 15-16 km height during a recordbreaking smoke event on 22 August 2017. Three polarization/ Raman lidars were run at the European Aerosol Research Lidar Network (EARLINET) station of Leipzig, Germany, after sunset on 22 August. For the first time, the linear depolarization ratio and extinction-to-backscatter ratio (lidar ratio) of aged smoke particles were measured at all three important lidar wavelengths of 355, 532, and 1064 nm. Very different particle depolarization ratios were found in the troposphere and in the stratosphere. The obviously compact and spherical tropospheric smoke particles caused almost no depolarization of backscattered laser radiation at all three wavelengths ( < 3 %), whereas the dry irregularly shaped soot particles in the stratosphere lead to high depolarization ratios of 22% at 355 nm and 18% at 532 nm and a comparably low value of 4% at 1064 nm. The lidar ratios were 40- 45 sr (355 nm), 65-80 sr (532 nm), and 80-95 sr (1064 nm) in both the tropospheric and stratospheric smoke layers indicating similar scattering and absorption properties. The strong wavelength dependence of the stratospheric depolarization ratio was probably caused by the absence of a particle coarse mode (particle mode consisting of particles with radius > 500nm). The stratospheric smoke particles formed a pronounced accumulation mode (in terms of particle volume or mass) centered at a particle radius of 350-400 nm. The effective particle radius was 0.32 μm. The tropospheric smoke particles were much smaller (effective radius of 0.17 μm). Mass concentrations were of the order of 5.5 μgm-3 (tropospheric layer) and 40 μgm-3 (stratospheric layer) in the night of 22 August 2017. The single scattering albedo of the stratospheric particles was estimated to be 0.74, 0.8, and 0.83 at 355, 532, and 1064 nm, respectively.

Loading...
Thumbnail Image
Item

The impact of mineral dust on cloud formation during the Saharan dust event in April 2014 over Europe

2018, Weger, M., Heinold, B., Engler, C., Schumann, U., Seifert, A., Fößig, R., Voigt, C., Baars, H., Blahak, U., Borrmann, S., Hoose, C., Kaufmann, S., Krämer, M., Seifert, P., Senf, F., Schneider, J., Tegen, I.

A regional modeling study on the impact of desert dust on cloud formation is presented for a major Saharan dust outbreak over Europe from 2 to 5 April 2014. The dust event coincided with an extensive and dense cirrus cloud layer, suggesting an influence of dust on atmospheric ice nucleation. Using interactive simulation with the regional dust model COSMO-MUSCAT, we investigate cloud and precipitation representation in the model and test the sensitivity of cloud parameters to dust-cloud and dust-radiation interactions of the simulated dust plume. We evaluate model results with ground-based and spaceborne remote sensing measurements of aerosol and cloud properties, as well as the in situ measurements obtained during the ML-CIRRUS aircraft campaign. A run of the model with single-moment bulk microphysics without online dust feedback considerably underestimated cirrus cloud cover over Germany in the comparison with infrared satellite imagery. This was also reflected in simulated upper-Tropospheric ice water content (IWC), which accounted for only 20 % of the observed values. The interactive dust simulation with COSMO-MUSCAT, including a two-moment bulk microphysics scheme and dust-cloud as well as dust-radiation feedback, in contrast, led to significant improvements. The modeled cirrus cloud cover and IWC were by at least a factor of 2 higher in the relevant altitudes compared to the noninteractive model run. We attributed these improvements mainly to enhanced deposition freezing in response to the high mineral dust concentrations. This was corroborated further in a significant decrease in ice particle radii towards more realistic values, compared to in situ measurements from the ML-CIRRUS aircraft campaign. By testing different empirical ice nucleation parameterizations, we further demonstrate that remaining uncertainties in the ice-nucleating properties of mineral dust affect the model performance at least as significantly as including the online representation of the mineral dust distribution. Dust-radiation interactions played a secondary role for cirrus cloud formation, but contributed to a more realistic representation of precipitation by suppressing moist convection in southern Germany. In addition, a too-low specific humidity in the 7 to 10 km altitude range in the boundary conditions was identified as one of the main reasons for misrepresentation of cirrus clouds in this model study.

Loading...
Thumbnail Image
Item

Wildfires as a source of airborne mineral dust - Revisiting a conceptual model using large-eddy simulation (LES)

2018, Wagner, R., Jähn, M., Schepanski, K.

Airborne mineral dust is a key player in the Earth system and shows manifold impacts on atmospheric properties such as the radiation budget and cloud microphysics. Investigations of smoke plumes originating from wildfires found significant fractions of mineral dust within these plumes - most likely raised by strong, turbulent fire-related winds. This study presents and revisits a conceptual model describing the emission of mineral dust particles during wildfires. This is achieved by means of high-resolution large-eddy simulation (LES), conducted with the All Scale Atmospheric Model (ASAM). The impact of (a) different fire properties representing idealized grassland and shrubland fires, (b) different ambient wind conditions modulated by the fire's energy flux, and (c) the wind's capability to mobilize mineral dust particles was investigated. Results from this study illustrate that the energy release of the fire leads to a significant increase in near-surface wind speed, which consequently enhances the dust uplift potential. This is in particular the case within the fire area where vegetation can be assumed to be widely removed and uncovered soil is prone to wind erosion. The dust uplift potential is very sensitive to fire properties, such as fire size, shape, and intensity, but also depends on the ambient wind velocity. Although measurements already showed the importance of wildfires for dust emissions, pyro-convection is so far neglected as a dust emission process in atmosphere-aerosol models. The results presented in this study can be seen as the first step towards a systematic parameterization representing the connection between typical fire properties and related dust emissions.

Loading...
Thumbnail Image
Item

Extending Near-Term Emissions Scenarios to Assess Warming Implications of Paris Agreement NDCs

2018, Gütschow, J., Jeffery, M.L., Schaeffer, M., Hare, B.

In the Paris Agreement countries have agreed to act together to hold global warming well below 2°C over preindustrial levels and to pursue efforts to limit warming to 1.5°C. To assess if the world is on track to meet this long-term temperature goal, countries' pledged emissions reductions (Nationally Determined Contributions, NDCs) need to be analyzed for their implied warming. Several research groups and nongovernmental organizations have estimated this warming and arrived at very different results but have invariably concluded that the current pledges are inadequate to hold warming below 2°C, let alone 1.5°C. In this paper we analyze different methods to estimate 2100 global mean temperature rise implied by countries' NDCs, which often only specify commitments until 2030. We present different methods to extend near-term emissions pathways that have been developed by the authors or used by different research groups and nongovernmental organizations to estimate 21st century warming consequences of Paris Agreement commitments. The abilities of these methods to project both low and high warming scenarios in line with the scenario literature is assessed. We find that the simpler methods are not suitable for temperature projections while more complex methods can produce results consistent with the energy and economic scenario literature. We further find that some methods can have a strong high or low temperature bias depending on parameter choices. The choice of methods to evaluate the consistency of aggregated NDC commitments is very important for reviewing progress toward the Paris Agreement's long-term temperature goal.

Loading...
Thumbnail Image
Item

Climate change, agriculture, and economic development in Ethiopia

2018, Yalew, A.W., Hirte, G., Lotze-Campen, H., Tscharaktschiew, S.

Quantifying the economic effects of climate change is a crucial step for planning adaptation in developing countries. This study assesses the economy-wide and regional effects of climate change-induced productivity and labor supply shocks in Ethiopian agriculture. We pursue a structural approach that blends biophysical and economic models. We consider different crop yield projections and add a regionalization to the country-wide CGE results. The study shows, in the worst case scenario, the effects on country-wide GDP may add up to -8%. The effects on regional value-added GDP are uneven and range from -10% to +2.5%. However, plausible cost-free exogenous structural change scenarios in labor skills and marketing margins may offset about 20-30% of these general equilibrium effects. As such, the ongoing structural transformation in the country may underpin the resilience of the economy to climate change. This can be regarded as a co-benefit of structural change in the country. Nevertheless, given the role of the sector in the current economic structure and the potency of the projected biophysical impacts, adaptation in agriculture is imperative. Otherwise, climate change may make rural livelihoods unpredictable and strain the country's economic progress.

Loading...
Thumbnail Image
Item

Ship-borne aerosol profiling with lidar over the Atlantic Ocean: From pure marine conditions to complex dust-smoke mixtures

2018, Bohlmann, S., Baars, H., Radenz, M., Engelmann, R., Macke, A.

The multi-wavelength Raman lidar PollyXT has been regularly operated aboard the research vessel Polarstern on expeditions across the Atlantic Ocean from north to south and vice versa. The lidar measurements of the RV Polarstern cruises PS95 from Bremerhaven, Germany, to Cape Town, Republic of South Africa (November 2015), and PS98 from Punta Arenas, Chile, to Bremerhaven, Germany (April/May 2016), are presented and analysed in detail. The latest set-up of PollyXT allows improved coverage of the marine boundary layer (MBL) due to an additional near-range receiver. Three case studies provide an overview of the aerosol detected over the Atlantic Ocean. In the first case, marine conditions were observed near South Africa on the autumn cruise PS95. Values of optical properties (depolarisation ratios close to zero, lidar ratios of 23 sr at 355 and 532 nm) within the MBL indicate pure marine aerosol. A layer of dried marine aerosol, indicated by an increase of the particle depolarisation ratio to about 10% at 355 nm (9% at 532 nm) and thus confirming the non-sphericity of these particles, could be detected on top of the MBL. On the same cruise, an almost pure Saharan dust plume was observed near the Canary Islands, presented in the second case. The third case deals with several layers of Saharan dust partly mixed with biomass-burning smoke measured on PS98 near the Cabo Verde islands. While the MBL was partly mixed with dust in the pure Saharan dust case, an almost marine MBL was observed in the third case. A statistical analysis showed latitudinal differences in the optical properties within the MBL, caused by the downmixing of dust in the tropics and anthropogenic influences in the northern latitudes, whereas the optical properties of the MBL in the Southern Hemisphere correlate with typical marine values. The particle depolarisation ratio of dried marine layers ranged between 4 and 9% at 532 nm. Night measurements from PS95 and PS98 were used to illustrate the potential of aerosol classification using lidar ratio, particle depolarisation ratio at 355 and 532 nm, and Angström exponent. Lidar ratio and particle depolarisation ratio have been found to be the main indicator for particle type, whereas the Ångström exponent is rather variable.

Loading...
Thumbnail Image
Item

Measuring Success: Improving Assessments of Aggregate Greenhouse Gas Emissions Reduction Goals

2018, Jeffery, M.L., Gütschow, J., Rocha, M.R., Gieseke, R.

Long-term success of the Paris Agreement will depend on the effectiveness of the instruments that it sets in place. Key among these are the nationally determined contributions (NDCs), which elaborate country-specific goals for mitigating and adapting to climate change. One role of the academic community and civil society in supporting the Paris Agreement is to assess the consistency between the near-term action under NDCs and the agreement's long-term goals, thereby providing insight into the chances of long-term success. Here we assess the strengths and weaknesses of current methods to estimate the effectiveness of the mitigation component of NDCs and identify the scientific and political advances that could be made to improve confidence in evaluating NDCs against the long-term goals. Specifically, we highlight (1) the influence of post-2030 assumptions on estimated 21st century warming, (2) uncertainties arising from the lack of published integrated assessment modeling scenarios with long-term, moderate effort reflecting a continuation of the current political situation, and (3) challenges in using a carbon budget approach. We further identify aspects that can be improved in the coming years: clearer communication regarding the meaning, likelihood, and timeframe of NDC consistent warming estimates; additional modeling of long-term, moderate action scenarios; and the identification of metrics for assessing progress that are not based solely on emissions, such as infrastructure investment, energy demand, or installed power capacity.