Search Results

Now showing 1 - 7 of 7
  • Item
    Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines
    ([London] : Nature Publishing Group UK, 2018) Senthamarai, Thirusangumurugan; Murugesan, Kathiravan; Schneidewind, Jacob; Kalevaru, Narayana V.; Baumann, Wolfgang; Neumann, Helfried; Kamer, Paul C. J.; Beller, Matthias; Jagadeesh, Rajenahally V.
    The production of primary benzylic and aliphatic amines, which represent essential feedstocks and key intermediates for valuable chemicals, life science molecules and materials, is of central importance. Here, we report the synthesis of this class of amines starting from carbonyl compounds and ammonia by Ru-catalyzed reductive amination using H2. Key to success for this synthesis is the use of a simple RuCl2(PPh3)3 catalyst that empowers the synthesis of >90 various linear and branched benzylic, heterocyclic, and aliphatic amines under industrially viable and scalable conditions. Applying this catalyst, −NH2 moiety has been introduced in functionalized and structurally diverse compounds, steroid derivatives and pharmaceuticals. Noteworthy, the synthetic utility of this Ru-catalyzed amination protocol has been demonstrated by upscaling the reactions up to 10 gram-scale syntheses. Furthermore, in situ NMR studies were performed for the identification of active catalytic species. Based on these studies a mechanism for Ru-catalyzed reductive amination is proposed.
  • Item
    Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C–H bond activation
    ([London] : Nature Publishing Group UK, 2018) Zhang, Yaoyuan; Zhao, Yun; Otroshchenko, Tatiana; Lund, Henrik; Pohl, Marga-Martina; Rodemerck, Uwe; Linke, David; Jiao, Haijun; Jiang, Guiyuan; Kondratenko, Evgenii V.
    Due to the complexity of heterogeneous catalysts, identification of active sites and the ways for their experimental design are not inherently straightforward but important for tailored catalyst preparation. The present study reveals the active sites for efficient C–H bond activation in C1–C4 alkanes over ZrO2 free of any metals or metal oxides usually catalysing this reaction. Quantum chemical calculations suggest that two Zr cations located at an oxygen vacancy are responsible for the homolytic C–H bond dissociation. This pathway differs from that reported for other metal oxides used for alkane activation, where metal cation and neighbouring lattice oxygen form the active site. The concentration of anion vacancies in ZrO2 can be controlled through adjusting the crystallite size. Accordingly designed ZrO2 shows industrially relevant activity and durability in non-oxidative propane dehydrogenation and performs superior to state-of-the-art catalysts possessing Pt, CrOx, GaOx or VOx species.
  • Item
    Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles
    ([London] : Nature Publishing Group UK, 2018) Zhang, Yujing; Pang, Shaofeng; Wei, Zhihong; Jiao, Haijun; Dai, Xingchao; Wang, Hongli; Shi, Feng
    Generally, a homogeneous catalyst exhibits good activity and defined active sites but it is difficult to recycle. Meanwhile, a heterogeneous catalyst can easily be reused but its active site is difficult to reveal. It is interesting to bridge the gap between homogeneous and heterogeneous catalysis via controllable construction of a heterogeneous catalyst containing defined active sites. Here, we report that a molecularly defined, single-active site heterogeneous catalyst has been designed and prepared via the oxidative polymerization of maleimide derivatives. These polymaleimide derivatives can be active catalysts for the selective oxidation of heterocyclic compounds to quinoline and indole via the recycling of -C=O and -C-OH groups, which was confirmed by tracing the reaction with GC-MS using maleimide as the catalyst and by FT-IR analysis with polymaleimide as the catalyst. These results might promote the development of heterogeneous catalysts with molecularly defined single active sites exhibiting a comparable activity to homogeneous catalysts.
  • Item
    Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst
    (Washington, DC [u.a.] : Assoc., 2018) Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias
    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO2 as the silicon atom source. The process involves thermal reduction of Si–O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon–carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal–based catalysts.
  • Item
    Novel acridine-based thiosemicarbazones as ‘turn-on' chemosensors for selective recognition of fluoride anion: a spectroscopic and theoretical study
    (London : Royal Soc. Publ., 2018-7-4) Isaac, Ibanga Okon; Munir, Iqra; al-Rashida, Mariya; Ali, Syed Abid; Shafiq, Zahid; Islam, Muhammad; Ludwig, Ralf; Ayub, Khurshid; Khan, Khalid Mohammed; Hameed, Abdul
    New thiosemicarbazide-linked acridines 3a–c were prepared and investigated as chemosensors for the detection of biologically and environmentally important anions. The compounds 3a–c were found selective for fluoride (F−) with no affinity for other anions, i.e. −OAc, Br−, I−, HSO4−, SO42−, PO43−, ClO3−, ClO4−, CN− and SCN−. Further, upon the gradual addition of a fluoride anion (F−) source (tetrabutylammonium fluoride), a well-defined change in colour of the solution of probes 3a–c was observed. The anion-sensing process was studied in detail via UV–visible absorption, fluorescence and 1H-NMR experiments. Moreover, during the synthesis of acridine probes 3a–c nickel fluoride (NiF2), a rarely explored transition metal fluoride salt, was used as the catalyst. Theoretical studies via density functional theory were also carried out to further investigate the sensing and anion (F−) selectivity pattern of these probes.
  • Item
    Cationic clustering influences the phase behaviour of ionic liquids
    (London : Nature Publishing Group, 2018) Niemann, Thomas; Zaitsau, Dimitri; Strate, Anne; Villinger, Alexander; Ludwig, Ralf
    “Unlike charges attract, but like charges repel”. This conventional wisdom has been recently challenged for ionic liquids. It could be shown that like-charged ions attract each other despite the powerful opposing electrostatic forces. In principle, cooperative hydrogen bonding between ions of like-charge can overcome the repulsive Coulomb interaction while pushing the limits of chemical bonding. The key challenge of this solvation phenomenon is to establish design principles for the efficient formation of clusters of like-charged ions in ionic liquids. This is realised here for a set of well-suited ionic liquids including the same hydrophobic anion but different cations all equipped with hydroxyethyl groups for possible H-bonding. The formation of H-bonded cationic clusters can be controlled by the delocalization of the positive charge on the cations. Strongly localized charge results in cation-anion interaction, delocalized charge leads to the formation of cationic clusters. For the first time we can show, that the cationic clusters influence the properties of ILs. ILs comprising these clusters can be supercooled and form glasses. Crystalline structures are obtained only, if the ILs are dominantly characterized by the attraction between opposite-charged ions resulting in conventional ion pairs. That may open a new path for controlling glass formation and crystallization. The glass temperatures and the phase transitions of the ILs are observed by differential scanning calorimetry (DSC) and infrared (IR) spectroscopy.
  • Item
    Hydrogenation of terminal and internal olefins using a biowaste-derived heterogeneous cobalt catalyst
    (Washington, DC [u.a.] : Assoc., 2018) Scharnagl, Florian Korbinian; Hertrich, Maximilian Franz; Ferretti, Francesco; Kreyenschulte, Carsten; Lund, Henrik; Jackstell, Ralf; Beller, Matthias
    Hydrogenation of olefins is achieved using biowaste-derived cobalt chitosan catalysts. Characterization of the optimal Co@Chitosan-700 by STEM (scanning transmission electron microscopy), EELS (electron energy loss spectroscopy), PXRD (powder x-ray diffraction), and elemental analysis revealed the formation of a distinctive magnetic composite material with high metallic Co content. The general performance of this catalyst is demonstrated in the hydrogenation of 50 olefins including terminal, internal, and functionalized derivatives, as well as renew-ables. Using this nonnoble metal composite, hydrogenation of terminal C==C double bonds occurs under very mild and benign conditions (water or methanol, 40° to 60°C). The utility of Co@Chitosan-700 is showcased for efficient hydrogenation of the industrially relevant examples diisobutene, fatty acids, and their triglycerides. Because of the magnetic behavior of this material and water as solvent, product separation and recycling of the catalyst are straightforward.