Search Results

Now showing 1 - 3 of 3
  • Item
    Black carbon aerosol in Rome (Italy): Inference of a long-term (2001-2017) record and related trends from AERONET sun-photometry data
    (Basel, Switzerland : MDPI AG, 2018) Di Ianni, Antonio; Costabile, Francesca; Barnaba, Francesca; Di Liberto, Luca; Weinhold, Kay; Wiedensohler, Alfred; Struckmeier, Caroline; Drewnick, Frank; Gobbi, Gian Paolo
    Surface concentration of black carbon (BC) is a key factor for the understanding of the impact of anthropogenic pollutants on human health. The majority of Italian cities lack long-term measurements of BC concentrations since such a metric is not regulated by EU legislation. This work attempts a long-term (2001–2017) inference of equivalent black carbon (eBC) concentrations in the city of Rome (Italy) based on sun-photometry data. To this end, aerosol light absorption coefficients at the surface are inferred from the ”columnar” aerosol aerosol light absorption coefficient records from the Rome Tor Vergata AERONET sun-photometer. The main focus of this work is to rescale aerosol light absorption columnar data (AERONET) to ground-level BC data. This is done by using values of mixing layer height (MLH) derived from ceilometer measurements and then by converting the absorption into eBC mass concentration through a mass–to–absorption conversion factor, the Mass Absorption Efficiency (MAE). The final aim is to obtain relevant data representative of the BC aerosol at the surface (i.e., in-situ)–so within the MLH– and then to infer a long-term record of “surface” equivalent black carbon mass concentration in Rome. To evaluate the accuracy of this procedure, we compared the AERONET-based results to in-situ measurements of aerosol light absorption coefficients (αabs) collected during some intensive field campaigns performed in Rome between 2010 and 2017. This analysis shows that different measurement methods, local emissions, and atmospheric conditions (MLH, residual layers) are some of the most important factors influencing differences between inferred and measured αabs. As a general result, ”inferred” and ”measured” αabs resulted to reach quite a good correlation (up to r = 0.73) after a screening procedure that excludes one of the major cause of discrepancy between AERONET inferred and in-situ measured αabs: the presence of highly absorbing aerosol layers at high altitude (e.g., dust), which frequently affects the Mediterranean site of Rome. Long-term trends of “inferred” αabs, eBC, and of the major optical variables that control aerosol’s direct radiative forcing (extinction aerosol optical depth, AODEXT, absorption aerosol optical depth, AODABS, and single scattering albedo, SSA) have been estimated. The Mann-Kendall statistical test associated with Sen’s slope was used to test the data for long-term trends. These show a negative trend for both AODEXT (−0.047/decade) and AODABS (−0.007/decade). The latter converts into a negative trend for the αabs of −5.9 Mm−1/decade and for eBC mass concentration of −0.76 μg/m3/decade. A positive trend is found for SSA (+0.014/decade), indicating that contribution of absorption to extinction is decreasing faster than that of scattering. These long-term trends are consistent with those of other air pollutant concentrations (i.e., PM2.5 and CO) in the Rome area. Despite some limitations, findings of this study fill a current lack in BC observations and may bear useful implications with regard to the improvement of our understanding of the impact of BC on air quality and climate in this Mediterranean urban region.
  • Item
    Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations
    (Amsterdam [u.a.] : Elsevier Science, 2018) Sun, J.; Birmili, W.; Hermann, M.; Tuch, T.; Weinhold, K.; Spindler, G.; Schladitz, A.; Bastian, S.; Löschau, G.; Cyrys, J.; Gu, J.; Flentje, H.; Briel, B.; Asbac, C.; Kaminski, H.; Ries, L.; Sohme, R.; Gerwig, H.; Wirtz, K.; Meinhardt, F.; Schwerin, A.; Bath, O.; Ma, N.; Wiedensohler, A.
    This work reports the first statistical analysis of multi-annual data on tropospheric aerosols from the German Ultrafine Aerosol Network (GUAN). Compared to other networks worldwide, GUAN with 17 measurement locations has the most sites equipped with particle number size distribution (PNSD) and equivalent black carbon (eBC) instruments and the most site categories in Germany ranging from city street/roadside to High Alpine. As we know, the variations of eBC and particle number concentration (PNC) are influenced by several factors such as source, transformation, transport and deposition. The dominant controlling factor for different pollutant parameters might be varied, leading to the different spatio-temporal variations among the measured parameters. Currently, a study of spatio-temporal variations of PNSD and eBC considering the influences of both site categories and spatial scale is still missing. Based on the multi-site dataset of GUAN, the goal of this study is to investigate how pollutant parameters may interfere with spatial characteristics and site categories. © 2019 The Authors
  • Item
    Black carbon emission and transport mechanisms to the free troposphere at the La Paz/El Alto (Bolivia) metropolitan area based on the Day of Census (2012)
    (Oxford [u.a.] : Elsevier, 2018) Wiedensohler, A.; Andrade, M.; Weinhold, K.; Müller, T.; Birmili, W.; Velarde, F.; Moreno, I.; Forno, R.; Sanchez, M.F.; Laj, P.; Ginot, P.; Whiteman, D.N.; Krejci, R.; Sellegri, K.; Reichler, T.
    Urban development, growing industrialization, and increasing demand for mobility have led to elevated levels of air pollution in many large cities in Latin America, where air quality standards and WHO guidelines are frequently exceeded. The conurbation of the metropolitan area of La Paz/El Alto is one of the fastest growing urban settlements in South America with the particularity of being located in a very complex terrain at a high altitude. As many large cities or metropolitan areas, the metropolitan area of La Paz/El Alto and the Altiplano region are facing air quality deterioration. Long-term measurement data of the equivalent black carbon (eBC) mass concentrations and particle number size distributions (PNSD) from the Global Atmosphere Watch Observatory Chacaltaya (CHC; 5240 m a.s.l., above sea level) indicated a systematic transport of particle matter from the metropolitan area of La Paz/El Alto to this high altitude station and subsequently to the lower free troposphere. To better understand the sources and the transport mechanisms, we conducted eBC and PNSDs measurements during an intensive campaign at two locations in the urban area of La Paz/El Alto from September to November 2012. While the airport of El Alto site (4040 m a.s.l.) can be seen as representative of the urban and Altiplano background, the road site located in Central La Paz (3590 m a.s.l.) is representative for heavy traffic-dominated conditions. Peaks of eBC mass concentrations up to 5 μg m−3 were observed at the El Alto background site in the early morning and evening, while minimum values were detected in the early afternoon, mainly due to thermal convection and change of the planetary boundary layer height. The traffic-related eBC mass concentrations at the road site reached maximum values of 10–20 μg m−3. A complete traffic ban on the specific Bolivian Day of Census (November 21, 2012) led to a decrease of eBC below 1 μg m−3 at the road site for the entire day. Compared to the day before and after, particle number concentrations decreased by a factor between 5 and 25 over the particle size range from 10 to 800 nm, while the submicrometer particle mass concentration dropped by approximately 80%. These results indicate that traffic is the dominating source of BC and particulate air pollution in the metropolitan area of La Paz/El Alto. In general, the diurnal cycle of eBC mass concentration at the Chacaltaya observatory is anti-correlated to the observations at the El Alto background site. This pattern indicates that the traffic-related particulate matter, including BC, is transported to higher altitudes with the developing of the boundary layer during daytime. The metropolitan area of La Paz/El Alto seems to be a significant source for BC of the regional lower free troposphere. From there, BC can be transported over long distances and exert impact on climate and composition of remote southern hemisphere.