Search Results

Now showing 1 - 4 of 4
  • Item
    PH-Responsive Biohybrid Carrier Material for Phenol Decontamination in Wastewater
    (Columbus, Ohio : American Chemical Soc., 2018) Pretscher, Martin; Pineda-Contreras, Beatriz A.; Kaiser, Patrick; Reich, Steffen; Schöbel, Judith; Kuttner, Christian; Freitag, Ruth; Fery, Andreas; Schmalz, Holger; Agarwal, Seema
    Smart polymers are a valuable platform to protect and control the activity of biological agents over a wide range of conditions, such as low pH, by proper encapsulation. Such conditions are present in olive oil mill wastewater with phenol as one of the most problematic constituents. We show that elastic and pH-responsive diblock copolymer fibers are a suitable carrier for Corynebacterium glutamicum, i.e., bacteria which are known for their ability to degrade phenol. Free C. glutamicum does not survive low pH conditions and fails to degrade phenol at low pH conditions. Our tea-bag like biohybrid system, where the pH-responsive diblock copolymer acts as a protecting outer shell for the embedded bacteria, allows phenol degradation even at low pH. Utilizing a two-step encapsulation process, planktonic cells were first encapsulated in poly(vinyl alcohol) to protect the bacteria against the organic solvents used in the second step employing coaxial electrospinning.
  • Item
    Complete Genome Sequence of a New Ruminococcaceae Bacterium Isolated from Anaerobic Biomass Hydrolysis
    (Washington, DC : American Soc. for Microbiology, 2018) Hahnke, Sarah; Abendroth, Christian; Langer, Thomas; Codoñer, Francisco M.; Ramm, Patrice; Porcar, Manuel; Luschnig, Olaf; Klocke, Michael
    A new Ruminococcaceae bacterium, strain HV4-5-B5C, participating in the anaerobic digestion of grass, was isolated from a mesophilic two-stage laboratoryscale leach bed biogas system. The draft annotated genome sequence presented in this study and 16S rRNA gene sequence analysis indicated the affiliation of HV4-5- B5C with the family Ruminococcaceae outside recently described genera. © 2018 Hahnke et al.
  • Item
    Sublethal injury and Viable but Non-culturable (VBNC) state in microorganisms during preservation of food and biological materials by non-thermal processes
    (Lausanne : Frontiers Media S. A, 2018) Schottroff, F.; Fröhling, A.; Zunabovic-Pichler, M.; Krottenthaler, A.; Schlüter, O.; Jäger, H.
    The viable but non-culturable (VBNC) state, as well as sublethal injury of microorganisms pose a distinct threat to food safety, as the use of traditional, culture-based microbiological analyses might lead to an underestimation or a misinterpretation of the product's microbial status and recovery phenomena of microorganisms may occur. For thermal treatments, a large amount of data and experience is available and processes are designed accordingly. In case of innovative inactivation treatments, however, there are still several open points with relevance for the investigation of inactivation mechanisms as well as for the application and validation of the preservation processes. Thus, this paper presents a comprehensive compilation of non-thermal preservation technologies, i.e., high hydrostatic pressure (HHP), pulsed electric fields (PEFs), pulsed light (PL), and ultraviolet (UV) radiation, as well as cold plasma (CP) treatments. The basic technological principles and the cellular and molecular mechanisms of action are described. Based on this, appropriate analytical methods are outlined, i.e., direct viable count, staining, and molecular biological methods, in order to enable the differentiation between viable and dead cells, as well as the possible occurrence of an intermediate state. Finally, further research needs are outlined.
  • Item
    Inhibition or stimulation of ochratoxin a synthesis on inoculated barley triggered by diffuse coplanar surface barrier discharge plasma
    (Lausanne : Frontiers Media S. A, 2018) Durek, J.; Schlüter, O.; Roscher, A.; Durek, P.; Fröhling, A.
    Ochratoxin A (OTA) is one of the most abundant food-contaminating mycotoxins. Besides their high toxicity, mycotoxins are highly stable to physical, chemical or biological detoxification. Therefore, the treatment with cold atmospheric plasma could be one approach to reduce the amount of mycotoxins in different products. The aim of this study was to determine the influence of cold atmospheric plasma on the inactivation of Aspergillus niger and Penicillium verrucosum inoculated on barley and their production of OTA. Inoculated barley was treated with plasma generated by dry air, CO2 or CO2 + O2 for 1 or 3 min and stored for up to two weeks at 9, 25, or 37°C. Three minutes of air plasma treatment effectively significantly reduced the total mold count of both microorganisms by 2.5–3 log cycles. The production of OTA from A. niger was only low, therefore the treatment effect was indistinguishable. The treatment of P. verrucosum on barley after an incubation of five days using a CO2 + O2 plasma resulted in a reduction of the OTA content from 49.0 (untreated) to 27.5 (1 min) and 23.8 ng/g (3 min), respectively. In contrast, CO2 plasma caused an increase of the OTA amount from 49.0 (untreated) to 55.8 (1 min) and 72.9 ng/g (3 min). Finally, the use of air plasma resulted likewise in a decrease of the OTA concentration from 56.9 (untreated) to 25.7 (1 min) and 20.2 ng/g (3 min), respectively. Reducing the incubation time before the treatment to 24 h caused in contrast an increase of the OTA content from 3.1 (untreated) to 29.1 (1 min) and 20.7 ng/g (3 min). Due to the high standard deviation, these changes were not significant, but the tendencies were clearly visible, showing the strong impact of the plasma gas on the OTA production. The results show, that even if the total mold count was reduced, under certain conditions the OTA amount was yet enhanced, probably due to a stress reaction of the mold. Concluding, the plasma gas and incubation conditions have to be considered to allow a successful inactivation of molds and in particular their toxic metabolites.