Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

Microstructural Characterization of a Laser Surface Remelted Cu-Based Shape Memory Alloy

2018-4-12, da Silva, Murillo Romero, Gargarella, Piter, Wolf, Witor, Gustmann, Tobias, Kiminami, Claudio Shyinti, Pauly, Simon, Eckert, Jürgen, Bolfarini, Claudemiro

Cu-based shape memory alloys (SMAs) present some advantages as higher transformation temperatures, lower costs and are easier to process than traditional Ti-based SMAs but they also show some disadvantages as low ductility and higher tendency for intergranular cracking. Several studies have sought for a way to improve the mechanical properties of these alloys and microstructural refinement has been frequently used. It can be obtained by laser remelting treatments. The aim of the present work was to investigate the influence of the laser surface remelting on the microstructure of a Cu-11.85Al-3.2Ni-3Mn (wt%) SMA. Plates were remelted using three different laser scanning speeds, i.e. 100, 300 and 500 mm/s. The remelted regions showed a T-shape morphology with a mean thickness of 52, 29 and 23 µm and an average grain size of 30, 29 and 23µm for plates remelted using scanning speed of 100, 300 and 500 mm/s, respectively. In the plates remelted with 100 and 300 mm/s some pores were found at the root of the keyhole due to the keyhole instability. We find that the instability of keyholes becomes more pronounced for lower scanning speeds. It was not observed any preferential orientation introduced by the laser treatment.

Loading...
Thumbnail Image
Item

The Aerosol Deposition Method: A Modified Aerosol Generation Unit to Improve Coating Quality

2018-9-1, Hanft, Dominik, Glosse, Philipp, Denneler, Stefan, Berthold, Thomas, Oomen, Marijn, Kauffmann-Weiss, Sandra, Weis, Frederik, Häßler, Wolfgang, Holzapfel, Bernhard, Moos, Ralf

Owing to its ability to produce dense thick-films at room temperature directly from a ceramic powder, the Aerosol Deposition Method (AD) possesses a unique feature in ceramics processing. For this technology, the aerosol generation of particles is a decisive part of reliable process control. However, there has only been a small amount of work published addressing this topic. In this work, we compare the aerosolization and deposition behavior of a fluidized bed generator with an aerosol generator with the rotary brush principle. While film properties very much depend on deposition time for the fluidized bed generator, films produced with the brush generator show a constant film profile, and their film thickness correlates with the controllable aerosol concentration and the duration of deposition. This type of aerosol generation may improve the setup towards a more reliable AD process.

Loading...
Thumbnail Image
Item

Getting magnetocaloric materials into good shape: Cold-working of La(Fe, Co, Si)13 by powder-in-tube-processing

2018, Funk, Alexander, Freudenberger, Jens, Waske, Anja, Krautz, Maria

The powder-in-tube (PIT) technology was applied to La(Fe, Co, Si)13 powder cladded by a thin seamless austenitic steel jacket. Wires appear to be promising in the search for alternative regenerator geometries, since they offer various possibilities of arrangements allowing to optimise heat transfer and pressure loss within the boundaries set by parallel plate and sphere beds. Here, pre-alloyed La(Fe, Co, Si)13 powder was filled in a AISI 316L austenitic steel tube and swaged to wires with an outer diameter of 1 mm. By mechanical deformation, the steel jacket thickness was reduced to about 100 μm surrounding the magnetocaloric core. A post-annealing of only 10 min at 1050 °C is sufficient to form the magnetocaloric NaZn13-type phase resulting in an entropy change close to the value of a pure reference sample. The presented technology is not limited to La(Fe, Co, Si)13/steel combination but can be extended to material pairs involving wire core materials with a first order transition, such as Fe2P-type or Heusler alloys.

Loading...
Thumbnail Image
Item

Revealing Grain Boundary Sliding from Textures of a Deformed Nanocrystalline Pd–Au Alloy

2018-1-25, Toth, Laszlo S., Skrotzki, Werner, Zhao, Yajun, Pukenas, Aurimas, Braun, Christian, Birringer, Rainer

Employing a recent modeling scheme for grain boundary sliding [Zhao et al. Adv. Eng. Mater. 2017, doi:10.1002/adem.201700212], crystallographic textures were simulated for nanocrystalline fcc metals deformed in shear compression. It is shown that, as grain boundary sliding increases, the texture strength decreases while the signature of the texture type remains the same. Grain boundary sliding affects the texture components differently with respect to intensity and angular position. A comparison of a simulation and an experiment on a Pd–10 atom % Au alloy with a 15 nm grain size reveals that, at room temperature, the predominant deformation mode is grain boundary sliding contributing to strain by about 60%.

Loading...
Thumbnail Image
Item

Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads

2018-4-24, Ehinger, David, Weise, Jörg, Baumeister, Joachim, Funk, Alexander, Waske, Anja, Krüger, Lutz, Martin, Ulrich

The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α′-martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading.

Loading...
Thumbnail Image
Item

In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope

2018-5-26, Rummeli, Mark H., Pan, Yumo, Zhao, Liang, Gao, Jing, Ta, Huy Q., Martinez, Ignacio G., Mendes, Rafael G., Gemming, Thomas, Fu, Lei, Bachmatiuk, Alicja, Liu, Zhongfan

The excitement of graphene (as well as 2D materials in general) has generated numerous procedures for the fabrication of graphene. Here we present a mini-review on a rather less known, but attractive, in situ means to fabricate graphene inside a transmission electron microscope (TEM). This is achieved in a conventional TEM (viz. no sophisticated specimen holders or microscopes are required) and takes advantage of inherent hydrocarbon contamination as a carbon source. Both catalyst free and single atom catalyst approaches are reviewed. An advantage of this technique is that not only can the growth process be imaged in situ, but this can also be achieved with atomic resolution. Moreover, in the future, one can anticipate such approaches enabling the growth of nano-materials with atomic precision.

Loading...
Thumbnail Image
Item

The Effects of Excess Co on the Phase Composition and Thermoelectric Properties of Half-Heusler NbCoSb

2018-5-11, Huang, Lihong, Wang, Junchen, Chen, Xi, He, Ran, Shuai, Jing, Zhang, Jianjun, Zhang, Qinyong, Ren, Zhifeng

NbCoSb with nominal 19 valence electrons, and is supposed to be metallic, has recently been reported to also exhibit the thermoelectric properties of a heavily doped n-type semiconductor. In this study, we prepared Co-rich NbCo1+xSb samples (x = 0, 0.2, 0.3, 0.4, 0.5), and their phase compositions, microstructures and thermoelectric properties were investigated. The Seebeck coefficient increased a great deal with increasing x, due to decreasing carrier concentration, and the total thermal conductivity reduced mainly because of declining κe. Finally, a peak thermoelectric figure of merit, ZT, was about 0.46 for NbCo1.3Sb at 973 K. This enhancement was mainly attributed to the reduction of electric thermal conductivity and the increase of Seebeck coefficient. The excess Co had effects on the carrier concentration, deformation potential Edef and DOS effective mass m*. Adding an excessive amount of Co leads to a very high Edef, which was detrimental for transport characteristics.