Search Results

Now showing 1 - 4 of 4
  • Item
    Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review
    (Basel : MDPI, 2018-1-16) Román, Silvia; Libra, Judy; Berge, Nicole; Sabio, Eduardo; Ro, Kyoung; Li, Liang; Ledesma, Beatriz; Álvarez, Andrés; Bae, Sunyoung
    Active research on biomass hydrothermal carbonization (HTC) continues to demonstrate its advantages over other thermochemical processes, in particular the interesting benefits that are associated with carbonaceous solid products, called hydrochar (HC). The areas of applications of HC range from biofuel to doped porous material for adsorption, energy storage, and catalysis. At the same time, intensive research has been aimed at better elucidating the process mechanisms and kinetics, and how the experimental variables (temperature, time, biomass load, feedstock composition, as well as their interactions) affect the distribution between phases and their composition. This review provides an analysis of the state of the art on HTC, mainly with regard to the effect of variables on the process, the associated kinetics, and the characteristics of the solid phase (HC), as well as some of the more studied applications so far. The focus is on research made over the last five years on these topics. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Measuring device for air speed in macroporous media and its application inside apple storage bins
    (Basel : MDPI, 2018) Geyer, Martin; Praeger, Ulrike; Truppel, Ingo; Scaar, Holger; Neuwald, Daniel A.; Jedermann, Reiner; Gottschalk, Klaus
    In cold storage facilities of fruit and vegetables, airflow is necessary for heat removal. The design of storage facilities influences the air speed in the surrounding of the product. Therefore, knowledge about airflow next to the product is important to plan the layout of cold stores adapted to the requirements of the products. A new sensing device (ASL, Air speed logger) is developed for omnidirectional measurement of air speed between fruit or vegetables inside storage bins or in bulk. It consists of four interconnected plastic spheres with 80 mm diameter each, adapted to the size of apple fruit. In the free space between the spheres, silicon diodes are fixed for the airflow measurement based on a calorimetric principle. Battery and data logger are mounted inside the spheres. The device is calibrated in a wind tunnel in a measuring range of 0–1.3 m/s. Air speed measurements in fruit bulks on laboratory scale and in an industrial fruit store show air speeds in gaps between fruit with high stability at different airflow levels. Several devices can be placed between stored products for determination of the air speed distribution inside bulks or bin stacks in a storage room.
  • Item
    New Tropical Peatland Gas and Particulate Emissions Factors Indicate 2015 Indonesian Fires Released Far More Particulate Matter (but Less Methane) than Current Inventories Imply
    (Basel : MDPI, 2018-3-21) Wooster, Martin J.; Gaveau, David L.A.; Salim, Mohammad A.; Zhang, Tianran; Xu, Weidong; Green, David C.; Huijnen, Vincent; Murdiyarso, Daniel; Gunawan, Dodo; Borchard, Nils; Schirrmann, Michael; Main, Bruce; Sepriando, Alpon
    Deforestation and draining of the peatlands in equatorial SE Asia has greatly increased their flammability, and in September-October 2015 a strong El Niño-related drought led to further drying and to widespread burning across parts of Indonesia, primarily on Kalimantan and Sumatra. These fires resulted in some of the worst sustained outdoor air pollution ever recorded, with atmospheric particulate matter (PM) concentrations exceeding those considered "extremely hazardous to health" by up to an order of magnitude. Here we report unique in situ air quality data and tropical peatland fire emissions factors (EFs) for key carbonaceous trace gases (CO2, CH4 and CO) and PM2.5 and black carbon (BC) particulates, based on measurements conducted on Kalimantan at the height of the 2015 fires, both at locations of "pure" sub-surface peat burning and spreading vegetation fires atop burning peat. PM2.5 are the most significant smoke constituent in terms of human health impacts, and we find in situ PM2.5 emissions factors for pure peat burning to be 17.8 to 22.3 g·kg-1, and for spreading vegetation fires atop burning peat 44 to 61 g·kg-1, both far higher than past laboratory burning of tropical peat has suggested. The latter are some of the highest PM2.5 emissions factors measured worldwide. Using our peatland CO2, CH4 and CO emissions factors (1779 ± 55 g·kg-1, 238 ± 36 g·kg-1, and 7.8 ± 2.3 g·kg-1 respectively) alongside in situ measured peat carbon content (610 ± 47 g-C·kg-1) we provide a new 358 Tg (± 30%) fuel consumption estimate for the 2015 Indonesian fires, which is less than that provided by the GFEDv4.1s and GFASv1.2 global fire emissions inventories by 23% and 34% respectively, and which due to our lower EFCH4 produces far less (~3×) methane. However, our mean in situ derived EFPM2.5 for these extreme tropical peatland fires (28 ± 6 g·kg-1) is far higher than current emissions inventories assume, resulting in our total PM2.5 emissions estimate (9.1 ± 3.5 Tg) being many times higher than GFEDv4.1s, GFASv1.2 and FINNv2, despite our lower fuel consumption. We find that two thirds of the emitted PM2.5 come from Kalimantan, one third from Sumatra, and 95% from burning peatlands. Using new geostationary fire radiative power (FRP) data we map the fire emissions' spatio-temporal variations in far greater detail than ever before (hourly, 0.05°), identifying a tropical peatland fire diurnal cycle twice as wide as in neighboring non-peat areas and peaking much later in the day. Our data show that a combination of greatly elevated PM2.5 emissions factors, large areas of simultaneous, long-duration burning, and very high peat fuel consumption per unit area made these Sept to Oct tropical peatland fires the greatest wildfire source of particulate matter globally in 2015, furthering evidence for a regional atmospheric pollution impact whose particulate matter component in particular led to millions of citizens being exposed to extremely poor levels of air quality for substantial periods. © 2018 by the authors.
  • Item
    Weed Mapping with UAS Imagery and a Bag of Visual Words Based Image Classifier
    (Basel : MDPI, 2018-9-24) Pflanz, Michael; Nordmeyer, Henning; Schirrmann, Michael
    Weed detection with aerial images is a great challenge to generate field maps for site-specific plant protection application. The requirements might be met with low altitude flights of unmanned aerial vehicles (UAV), to provide adequate ground resolutions for differentiating even single weeds accurately. The following study proposed and tested an image classifier based on a Bag of Visual Words (BoVW) framework for mapping weed species, using a small unmanned aircraft system (UAS) with a commercial camera on board, at low flying altitudes. The image classifier was trained with support vector machines after building a visual dictionary of local features from many collected UAS images. A window-based processing of the models was used for mapping the weed occurrences in the UAS imagery. The UAS flight campaign was carried out over a weed infested wheat field, and images were acquired between a 1 and 6 m flight altitude. From the UAS images, 25,452 weed plants were annotated on species level, along with wheat and soil as background classes for training and validation of the models. The results showed that the BoVW model allowed the discrimination of single plants with high accuracy for Matricaria recutita L. (88.60%), Papaver rhoeas L. (89.08%), Viola arvensis M. (87.93%), and winter wheat (94.09%), within the generated maps. Regarding site specific weed control, the classified UAS images would enable the selection of the right herbicide based on the distribution of the predicted weed species. © 2018 by the authors.