Search Results

Now showing 1 - 10 of 18
  • Item
    A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios
    (Katlenburg-Lindau : Copernicus, 2018) Kim, HyeJin; Rosa, Isabel M. D.; Alkemade, Rob; Leadley, Paul; Hurtt, George; Popp, Alexander; van Vuuren, Detlef P.; Anthoni, Peter; Arneth, Almut; Baisero, Daniele; Caton, Emma; Chaplin-Kramer, Rebecca; Chini, Louise; De Palma, Adriana; Di Fulvio, Fulvio; Di Marco, Moreno; Espinoza, Felipe; Ferrier, Simon; Fujimori, Shinichiro; Gonzalez, Ricardo E.; Gueguen, Maya; Guerra, Carlos; Harfoot, Mike; Harwood, Thomas D.; Hasegawa, Tomoko; Haverd, Vanessa; Havlík, Petr; Hellweg, Stefanie; Hill, Samantha L. L.; Hirata, Akiko; Hoskins, Andrew J.; Janse, Jan H.; Jetz, Walter; Johnson, Justin A.; Krause, Andreas; Leclère, David; Martins, Ines S.; Matsui, Tetsuya; Merow, Cory; Obersteiner, Michael; Ohashi, Haruka; Poulter, Benjamin; Purvis, Andy; Quesada, Benjamin; Rondinini, Carlo; Schipper, Aafke M.; Sharp, Richard; Takahashi, Kiyoshi; Thuiller, Wilfried; Titeux, Nicolas; Visconti, Piero; Ware, Christopher; Wolf, Florian; Pereira, Henrique M.
    To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts of land-use and climate change on biodiversity and ecosystem services (i.e., nature's contributions to people) over the coming decades, compared to the 20th century, using a set of common metrics at multiple scales, and (2) to identify model uncertainties and research gaps through the comparisons of projected biodiversity and ecosystem services across models. BES-SIM uses three scenarios combining specific Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs)-SSP1xRCP2.6, SSP3xRCP6.0, SSP5xRCP8.6-to explore a wide range of land-use change and climate change futures. This paper describes the rationale for scenario selection, the process of harmonizing input data for land use, based on the second phase of the Land Use Harmonization Project (LUH2), and climate, the biodiversity and ecosystem services models used, the core simulations carried out, the harmonization of the model output metrics, and the treatment of uncertainty. The results of this collaborative modeling project will support the ongoing global assessment of IPBES, strengthen ties between IPBES and the Intergovernmental Panel on Climate Change (IPCC) scenarios and modeling processes, advise the Convention on Biological Diversity (CBD) on its development of a post-2020 strategic plans and conservation goals, and inform the development of a new generation of nature-centred scenarios.
  • Item
    Diverging importance of drought stress for maize and winter wheat in Europe
    ([London] : Nature Publishing Group UK, 2018) Webber, Heidi; Ewert, Frank; Olesen, Jørgen E.; Müller, Christoph; Fronzek, Stefan; Ruane, Alex C.; Bourgault, Maryse; Martre, Pierre; Ababaei, Behnam; Bindi, Marco; Ferrise, Roberto; Finger, Robert; Fodor, Nándor; Gabaldón-Leal, Clara; Gaiser, Thomas; Jabloun, Mohamed; Kersebaum, Kurt-Christian; Lizaso, Jon I.; Lorite, Ignacio J.; Manceau, Loic; Moriondo, Marco; Nendel, Claas; Rodríguez, Alfredo; Ruiz-Ramos, Margarita; Semenov, Mikhail A.; Siebert, Stefan; Stella, Tommaso; Stratonovitch, Pierre; Trombi, Giacomo; Wallach, Daniel
    Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984–2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.
  • Item
    Early-warning signals for Dansgaard-Oeschger events in a high-resolution ice core record
    (London : Nature Publishing Group, 2018) Boers, N.
    The Dansgaard-Oeschger (DO) events, as observed in oxygen isotope ratios from the North Greenland Ice Core Project (NGRIP) record, are an outstanding example of past abrupt climate transitions. Their physical cause remains debated, and previous research indicated that they are not preceded by classical early-warning signals (EWS). Subsequent research hypothesized that the DO events are caused by bifurcations of physical mechanisms operating at decadal timescales, and proposed to search for EWS in the high-frequency fluctuation levels. Here, a time series with 5-year resolution is obtained from the raw NGRIP record, and significant numbers of EWS in terms of variance and autocorrelation increases are revealed in the decadal-scale variability. Wavelet analysis indicates that the EWS are most pronounced in the 10-50-year periodicity band, confirming the above hypothesis. The DO events are hence neither directly noise-induced nor purely externally forced, which provides valuable constraints regarding potential physical causes.
  • Item
    Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action
    (London : Nature Publishing Group, 2018) Mengel, M.; Nauels, A.; Rogelj, J.; Schleussner, C.-F.
    Sea-level rise is a major consequence of climate change that will continue long after emissions of greenhouse gases have stopped. The 2015 Paris Agreement aims at reducing climate-related risks by reducing greenhouse gas emissions to net zero and limiting global-mean temperature increase. Here we quantify the effect of these constraints on global sea-level rise until 2300, including Antarctic ice-sheet instabilities. We estimate median sea-level rise between 0.7 and 1.2 m, if net-zero greenhouse gas emissions are sustained until 2300, varying with the pathway of emissions during this century. Temperature stabilization below 2 °C is insufficient to hold median sea-level rise until 2300 below 1.5 m. We find that each 5-year delay in near-term peaking of CO2 emissions increases median year 2300 sea-level rise estimates by ca. 0.2 m, and extreme sea-level rise estimates at the 95th percentile by up to 1 m. Our results underline the importance of near-term mitigation action for limiting long-term sea-level rise risks.
  • Item
    Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate
    (Fort Collins, Colo. : [Verlag nicht ermittelbar], 2018) Collalti, Alessio; Trotta, Carlo; Keenan, Trevor F.; Ibrom, Andreas; Bond‐Lamberty, Ben; Grote, Ruediger; Vicca, Sara; Reyer, Christopher P. O.; Migliavacca, Mirco; Veroustraete, Frank; Anav, Alessandro; Campioli, Matteo; Scoccimarro, Enrico; Šigut, Ladislav; Grieco, Elisa; Cescatti, Alessandro; Matteucci, Giorgio
    Forest carbon use efficiency (CUE, the ratio of net to gross primary productivity) represents the fraction of photosynthesis that is not used for plant respiration. Although important, it is often neglected in climate change impact analyses. Here we assess the potential impact of thinning on projected carbon cycle dynamics and implications for forest CUE and its components (i.e., gross and net primary productivity and plant respiration), as well as on forest biomass production. Using a detailed process-based forest ecosystem model forced by climate outputs of five Earth System Models under four representative climate scenarios, we investigate the sensitivity of the projected future changes in the autotrophic carbon budget of three representative European forests. We focus on changes in CUE and carbon stocks as a result of warming, rising atmospheric CO2 concentration, and forest thinning. Results show that autotrophic carbon sequestration decreases with forest development, and the decrease is faster with warming and in unthinned forests. This suggests that the combined impacts of climate change and changing CO2 concentrations lead the forests to grow faster, mature earlier, and also die younger. In addition, we show that under future climate conditions, forest thinning could mitigate the decrease in CUE, increase carbon allocation into more recalcitrant woody pools, and reduce physiological-climate-induced mortality risks. Altogether, our results show that thinning can improve the efficacy of forest-based mitigation strategies and should be carefully considered within a portfolio of mitigation options.
  • Item
    Europe’s renewable energy directive poised to harm global forests
    ([London] : Nature Publishing Group UK, 2018) Searchinger, Timothy D.; Beringer, Tim; Holtsmark, Bjart; Kammen, Daniel M.; Lambin, Eric F.; Lucht, Wolfgang; Raven, Peter; van Ypersele, Jean-Pascal
    This comment raises concerns regarding the way in which a new European directive, aimed at reaching higher renewable energy targets, treats wood harvested directly for bioenergy use as a carbon-free fuel. The result could consume quantities of wood equal to all Europe’s wood harvests, greatly increase carbon in the air for decades, and set a dangerous global example.
  • Item
    Magnitude and robustness associated with the climate change impacts on global hydrological variables for transient and stabilized climate states
    (Bristol : IOP Publ., 2018) Boulange, Julien; Hanasaki, Naota; Veldkamp, Ted; Schewe, Jacob; Shiogama, Hideo
    Recent studies have assessed the impacts of climate change at specific global temperature targets using relatively short (30 year ) transient time-slice periods which are characterized by a steady increase in global mean temperature with time. The Inter-Sectoral Impacts Model Intercomparison Project Phase 2b (ISIMIP2b) provides trend-preserving bias-corrected climate model datasets over six centuries for four global climate models (GCMs) which therefore can be used to evaluate the potential effects of using time-slice periods from stabilized climate state rather than time-slice periods from transient climate state on climate change impacts. Using the H08 global hydrological model, the impacts of climate change, quantified as the deviation from the pre-industrial era, and the signal-to-noise (SN) ratios were computed for five hydrological variables, namely evapotranspiration (EVA), precipitation (PCP), snow water equivalent (SNW), surface temperature (TAR), and total discharge (TOQ) over 20 regions comprising the global land area. A significant difference in EVA for the transient and stabilized climate states was systematically detected for all four GCMs. In addition, three out of the four GCMs indicated that significant differences in PCP, TAR, and TOQ for the transient and stabilized climate states could also be detected over a small fraction of the globe. For most regions, the impacts of climate change toward EVA, PCP, and TOQ are indicated to be underestimated using the transient climate state simulations. The transient climate state was also identified to underestimate the SN ratios compared to the stabilized climate state. For both the global and regional scales, however, there was no indication that surface areas associated with the different classes of SN ratios changed depending on the two climate states (t-test, p > 0.01). Transient time slices may be considered a good approximation of the stabilized climate state, for large-scale hydrological studies and many regions and variables, as: (1) impacts of climate change were only significantly different from those of the stabilized climate state for a small fraction of the globe, and (2) these differences were not indicated to alter the robustness of the impacts of climate change.
  • Item
    Extending Near-Term Emissions Scenarios to Assess Warming Implications of Paris Agreement NDCs
    (Chichester : John Wiley and Sons Inc, 2018) Gütschow, J.; Jeffery, M.L.; Schaeffer, M.; Hare, B.
    In the Paris Agreement countries have agreed to act together to hold global warming well below 2°C over preindustrial levels and to pursue efforts to limit warming to 1.5°C. To assess if the world is on track to meet this long-term temperature goal, countries' pledged emissions reductions (Nationally Determined Contributions, NDCs) need to be analyzed for their implied warming. Several research groups and nongovernmental organizations have estimated this warming and arrived at very different results but have invariably concluded that the current pledges are inadequate to hold warming below 2°C, let alone 1.5°C. In this paper we analyze different methods to estimate 2100 global mean temperature rise implied by countries' NDCs, which often only specify commitments until 2030. We present different methods to extend near-term emissions pathways that have been developed by the authors or used by different research groups and nongovernmental organizations to estimate 21st century warming consequences of Paris Agreement commitments. The abilities of these methods to project both low and high warming scenarios in line with the scenario literature is assessed. We find that the simpler methods are not suitable for temperature projections while more complex methods can produce results consistent with the energy and economic scenario literature. We further find that some methods can have a strong high or low temperature bias depending on parameter choices. The choice of methods to evaluate the consistency of aggregated NDC commitments is very important for reviewing progress toward the Paris Agreement's long-term temperature goal.
  • Item
    Between Scylla and Charybdis: Delayed mitigation narrows the passage between large-scale CDR and high costs
    (Bristol : IOP Publishing, 2018) Strefler, Jessica; Bauer, Nico; Kriegler, Elmar; Popp, Alexander; Giannousakis, Anastasis; Edenhofer, Ottmar
    There are major concerns about the sustainability of large-scale deployment of carbon dioxide removal (CDR) technologies. It is therefore an urgent question to what extent CDR will be needed to implement the long term ambition of the Paris Agreement. Here we show that ambitious near term mitigation significantly decreases CDR requirements to keep the Paris climate targets within reach. Following the nationally determined contributions (NDCs) until 2030 makes 2 °C unachievable without CDR. Reducing 2030 emissions by 20% below NDC levels alleviates the trade-off between high transitional challenges and high CDR deployment. Nevertheless, transitional challenges increase significantly if CDR is constrained to less than 5 Gt CO2 a−1 in any year. At least 8 Gt CO2 a−1 CDR are necessary in the long term to achieve 1.5 °C and more than 15 Gt CO2 a−1 to keep transitional challenges in bounds.
  • Item
    Potential and costs of carbon dioxide removal by enhanced weathering of rocks
    (Bristol : IOP Publishing, 2018) Strefler, Jessica; Amann, Thorben; Bauer, Nico; Kriegler, Elmar; Hartmann, Jens
    The chemical weathering of rocks currently absorbs about 1.1 Gt CO2 a−1 being mainly stored as bicarbonate in the ocean. An enhancement of this slow natural process could remove substantial amounts of CO2 from the atmosphere, aiming to offset some unavoidable anthropogenic emissions in order to comply with the Paris Agreement, while at the same time it may decrease ocean acidification. We provide the first comprehensive assessment of economic costs, energy requirements, technical parameterization, and global and regional carbon removal potential. The crucial parameters defining this potential are the grain size and weathering rates. The main uncertainties about the potential relate to weathering rates and rock mass that can be integrated into the soil. The discussed results do not specifically address the enhancement of weathering through microbial processes, feedback of geogenic nutrient release, and bioturbation. We do not only assess dunite rock, predominantly bearing olivine (in the form of forsterite) as the mineral that has been previously proposed to be best suited for carbon removal, but focus also on basaltic rock to minimize potential negative side effects. Our results show that enhanced weathering is an option for carbon dioxide removal that could be competitive already at 60 US $ t−1 CO2 removed for dunite, but only at 200 US $ t−1 CO2 removed for basalt. The potential carbon removal on cropland areas could be as large as 95 Gt CO2 a−1 for dunite and 4.9 Gt CO2 a−1 for basalt. The best suited locations are warm and humid areas, particularly in India, Brazil, South-East Asia and China, where almost 75% of the global potential can be realized. This work presents a techno-economic assessment framework, which also allows for the incorporation of further processes.