Search Results

Now showing 1 - 10 of 682
  • Item
    Ice-marginal forced regressive deltas in glacial lake basins: geomorphology, facies variability and large-scale depositional architecture
    (Oxford [u.a.] : Wiley-Blackwell, 2018) Winsemann, Jutta; Lang, Jörg; Polom, Ulrich; Loewer, Markus; Igel, Jan; Pollok, Lukas; Brandes, Christian
    This study presents a synthesis of the geomorphology, facies variability and depositional architecture of ice-marginal deltas affected by rapid lake-level change. The integration of digital elevation models, outcrop, borehole, ground-penetrating radar and high-resolution shear-wave seismic data allows for a comprehensive analysis of these delta systems and provides information about the distinct types of deltaic facies and geometries generated under different lake-level trends. The exposed delta sediments record mainly the phase of maximum lake level and subsequent lake drainage. The stair-stepped profiles of the delta systems reflect the progressive basinward lobe deposition during forced regression when the lakes successively drained. Depending on the rate and magnitude of lake-level fall, fan-shaped, lobate or more digitate tongue-like delta morphologies developed. Deposits of the stair-stepped transgressive delta bodies are buried, downlapped and onlapped by the younger forced regressive deposits. The delta styles comprise both Gilbert-type deltas and shoal-water deltas. The sedimentary facies of the steep Gilbert-type delta foresets include a wide range of gravity-flow deposits. Delta deposits of the forced-regressive phase are commonly dominated by coarse-grained debrisflow deposits, indicating strong upslope erosion and cannibalization of older delta deposits. Deposits of supercritical turbidity currents are particularly common in sand-rich Gilbert-type deltas that formed during slow rises in lake level and during highstands. Foreset beds consist typically of laterally and vertically stacked deposits of antidunes and cyclic steps. The trigger mechanisms for these supercritical turbidity currents were both hyperpycnal meltwater flows and slope-failure events. Shoal-water deltas formed at low water depths during both low rates of lake-level rise and forced regression. Deposition occurred from tractional flows. Transgressive mouthbars form laterally extensive sand-rich delta bodies with a digitate, multi-tongue morphology. In contrast, forced regressive gravelly shoal-water deltas show a high dispersion of flow directions and form laterally overlapping delta lobes. Deformation structures in the forced-regressive ice-marginal deltas are mainly extensional features, including normal faults, small graben or half-graben structures and shear-deformation bands, which are related to gravitational delta tectonics, postglacial faulting during glacial-isostatic adjustment, and crestal collapse above salt domes. A neotectonic component cannot be ruled out in some cases. © 2018 The Authors. Boreas published by John Wiley & Sons Ltd on behalf of The Boreas Collegium
  • Item
    Simulation of the future sea level contribution of Greenland with a new glacial system model
    (Katlenburg-Lindau : Copernicus, 2018) Calov, Reinhard; Beyer, Sebastian; Greve, Ralf; Beckmann, Johanna; Willeit, Matteo; Kleiner, Thomas; Rückamp, Martin; Humbert, Angelika; Ganopolski, Andrey
    We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961-1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961-1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation-surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation-surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking the Helheim and Store glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.
  • Item
    Electrolytic Surface Treatment for Improved Adhesion between Carbon Fibre and Polycarbonate
    (Basel : MDPI, 2018) Kamps, Jan Henk; Henderson, Luke C.; Scheffler, Christina; Van der Heijden, Ruud; Simon, Frank; Bonizzi, Teena; Verghese, Nikhil
    To achieve good mechanical properties of carbon fibre-reinforced polycarbonate composites, the fibre-matrix adhesion must be dialled to an optimum level. The electrolytic surface treatment of carbon fibres during their production is one of the possible means of adapting the surface characteristics of the fibres. The production of a range of tailored fibres with varying surface treatments (adjusting the current, potential, and conductivity) was followed by contact angle, inverse gas chromatography and X-ray photoelectron spectroscopy measurements, which revealed a significant increase in polarity and hydroxyl, carboxyl, and nitrile groups on the fibre surface. Accordingly, an increase in the fibre-matrix interaction indicated by a higher interfacial shear strength was observed with the single fibre pull-out force-displacement curves. The statistical analysis identified the correlation between the process settings, fibre surface characteristics, and the performance of the fibres during single fibre pull-out testing.
  • Item
    Endurance of quantum coherence due to particle indistinguishability in noisy quantum networks
    (London : Nature Publ. Group, 2018) Perez-Leija, Armando; Guzmán-Silva, Diego; León-Montiel, Roberto de J.; Gräfe, Markus; Heinrich, Matthias; Moya-Cessa, Hector; Busch, Kurt; Szameit, Alexander
    Quantum coherence, the physical property underlying fundamental phenomena such as multi-particle interference and entanglement, has emerged as a valuable resource upon which modern technologies are founded. In general, the most prominent adversary of quantum coherence is noise arising from the interaction of the associated dynamical system with its environment. Under certain conditions, however, the existence of noise may drive quantum and classical systems to endure intriguing nontrivial effects. In this vein, here we demonstrate, both theoretically and experimentally, that when two indistinguishable non-interacting particles co-propagate through quantum networks affected by non-dissipative noise, the system always evolves into a steady state in which coherences accounting for particle indistinguishabilty perpetually prevail. Furthermore, we show that the same steady state with surviving quantum coherences is reached even when the initial state exhibits classical correlations.
  • Item
    Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate
    (Fort Collins, Colo. : [Verlag nicht ermittelbar], 2018) Collalti, Alessio; Trotta, Carlo; Keenan, Trevor F.; Ibrom, Andreas; Bond‐Lamberty, Ben; Grote, Ruediger; Vicca, Sara; Reyer, Christopher P. O.; Migliavacca, Mirco; Veroustraete, Frank; Anav, Alessandro; Campioli, Matteo; Scoccimarro, Enrico; Šigut, Ladislav; Grieco, Elisa; Cescatti, Alessandro; Matteucci, Giorgio
    Forest carbon use efficiency (CUE, the ratio of net to gross primary productivity) represents the fraction of photosynthesis that is not used for plant respiration. Although important, it is often neglected in climate change impact analyses. Here we assess the potential impact of thinning on projected carbon cycle dynamics and implications for forest CUE and its components (i.e., gross and net primary productivity and plant respiration), as well as on forest biomass production. Using a detailed process-based forest ecosystem model forced by climate outputs of five Earth System Models under four representative climate scenarios, we investigate the sensitivity of the projected future changes in the autotrophic carbon budget of three representative European forests. We focus on changes in CUE and carbon stocks as a result of warming, rising atmospheric CO2 concentration, and forest thinning. Results show that autotrophic carbon sequestration decreases with forest development, and the decrease is faster with warming and in unthinned forests. This suggests that the combined impacts of climate change and changing CO2 concentrations lead the forests to grow faster, mature earlier, and also die younger. In addition, we show that under future climate conditions, forest thinning could mitigate the decrease in CUE, increase carbon allocation into more recalcitrant woody pools, and reduce physiological-climate-induced mortality risks. Altogether, our results show that thinning can improve the efficacy of forest-based mitigation strategies and should be carefully considered within a portfolio of mitigation options.
  • Item
    Comparative study of sculptured metallic thin films deposited by oblique angle deposition at different temperatures
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018) Liedtke, Susann; Grüner, Christoph; Gerlach, Jürgen W.; Rauschenbach, Bernd
    Metals with a wide range of melting points are deposited by electron beam evaporation under oblique deposition geometry on thermally oxidized Si substrates. During deposition the sample holder is cooled down to 77 K. It is observed that all obliquely deposited metals grow as tilted, high aspect ratio columns and hence with a similar morphology. A comparison of such columns with those deposited at room temperature (300 K) reveals that shadowing dominates the growth process for columns deposited at 77 K, while the impact of surface diffusion is significantly increased at elevated substrate temperatures. Furthermore, it is discussed how the incidence angle of the incoming particle flux and the substrate temperature affect the columnar tilt angles and the porosity of the sculptured thin films. Exemplarily for tilted Al columns deposited at 77 K and at 300 K, in-plane pole figure measurements are carried out. A tendency to form a biaxial texture as well as a change in the crystalline structure depending on the substrate temperature is found for those films.
  • Item
    Fusion of MALDI Spectrometric Imaging and Raman Spectroscopic Data for the Analysis of Biological Samples
    (Lausanne : Frontiers Media, 2018) Ryabchykov, Oleg; Popp, Jürgen; Bocklitz, Thomas W.
    Despite of a large number of imaging techniques for the characterization of biological samples, no universal one has been reported yet. In this work, a data fusion approach was investigated for combining Raman spectroscopic data with matrix-assisted laser desorption/ionization (MALDI) mass spectrometric data. It betters the image analysis of biological samples because Raman and MALDI information can be complementary to each other. While MALDI spectrometry yields detailed information regarding the lipid content, Raman spectroscopy provides valuable information about the overall chemical composition of the sample. The combination of Raman spectroscopic and MALDI spectrometric imaging data helps distinguishing different regions within the sample with a higher precision than would be possible by using either technique. We demonstrate that a data weighting step within the data fusion is necessary to reveal additional spectral features. The selected weighting approach was evaluated by examining the proportions of variance within the data explained by the first principal components of a principal component analysis (PCA) and visualizing the PCA results for each data type and combined data. In summary, the presented data fusion approach provides a concrete guideline on how to combine Raman spectroscopic and MALDI spectrometric imaging data for biological analysis.
  • Item
    TiO2 as Photosensitizer and Photoinitiator for Synthesis of Photoactive TiO2-PEGDA Hydrogel Without Organic Photoinitiator
    (Lausanne : Frontiers Media, 2018-8-7) Glass, Sarah; Trinklein, Betsy; Abel, Bernd; Schulze, Agnes
    The replacement of potentially toxic photoinitiators is of increasing interest regarding the synthesis of biomaterials by photopolymerization. Therefore, we present a new method for the preparation of UV polymerized hydrogels with TiO2 as a photoinitiator. Titania is known to be an excellent photoactive compound which is non-toxic, inert, and cheap. The so-formed hydrogels possess excellent mechanical properties, a high swelling ratio, and high thermal stability. Furthermore, no TiO2 is released from the hydrogels. Thus, the material is highly suitable for medical applications. Additionally, the present TiO2 in the hydrogels remains photoactive as demonstrated by degradation of methylene blue. This enables the application of TiO2-hydrogels in photodynamic therapy.
  • Item
    When optimization for governing human-environment tipping elements is neither sustainable nor safe
    (London : Nature Publishing Group, 2018) Barfuss, W.; Donges, J.F.; Lade, S.J.; Kurths, J.
    Optimizing economic welfare in environmental governance has been criticized for delivering short-term gains at the expense of long-term environmental degradation. Different from economic optimization, the concepts of sustainability and the more recent safe operating space have been used to derive policies in environmental governance. However, a formal comparison between these three policy paradigms is still missing, leaving policy makers uncertain which paradigm to apply. Here, we develop a better understanding of their interrelationships, using a stylized model of human-environment tipping elements. We find that no paradigm guarantees fulfilling requirements imposed by another paradigm and derive simple heuristics for the conditions under which these trade-offs occur. We show that the absence of such a master paradigm is of special relevance for governing real-world tipping systems such as climate, fisheries, and farming, which may reside in a parameter regime where economic optimization is neither sustainable nor safe.
  • Item
    Adaptation required to preserve future high-end river flood risk at present levels
    (Washington : American Association for the Advancement of Science (A A A S), 2018) Willner, S.N.; Levermann, A.; Zhao, F.; Frieler, K.
    Earth’s surface temperature will continue to rise for another 20 to 30 years even with the strongest carbon emission reduction currently considered. The associated changes in rainfall patterns can result in an increased flood risk worldwide. We compute the required increase in flood protection to keep high-end fluvial flood risk at present levels. The analysis is carried out worldwide for subnational administrative units. Most of the United States, Central Europe, and Northeast and West Africa, as well as large parts of India and Indonesia, require the strongest adaptation effort. More than half of the United States needs to at least double their protection within the next two decades. Thus, the need for adaptation to increased river flood is a global problem affecting industrialized regions as much as developing countries.