Search Results

Now showing 1 - 2 of 2
  • Item
    Targeting malignant melanoma with physical plasmas
    (Amsterdam [u.a.] : Elsevier, 2018) Pasqual-Melo, Gabriella; Gandhirajan, Rajesh Kumar; Stoffels, Ingo; Bekeschus, Sander
    Melanoma is the deadliest form of cutaneous neoplasia. With a five-year survival rate of only 5–19%, metastatic melanoma presents severe challenges in clinical therapies. In addition, palliation is often problematic due to large numbers of fast growing metastasis. This calls for new therapeutic avenues targeting highly aggressive melanoma in palliative patients. One recently suggested innovative approach for eradication of topical tumor lesions is the application of cold physical plasma. This partially ionized gas emits a cocktail of reactive oxygen and nitrogen species (ROS/RNS). ROS/RNS have been shown to be a double-edged sword in fueling cancer growth at low doses but abrogating it at higher doses. The ROS/RNS output of plasma devices is tunable, and many studies have successfully decreased cancer cell growth in vitro and tumor burden in vivo. In general, increasing numbers of clinical trials suggest combination therapies to outperform monotherapies with regard to prognosis in patients. This review describes current challenges in melanoma treatment and highlights the concept of plasma therapy in experimental studies performed in melanoma research. Future perspectives are given that combine the usage of physical plasma with e.g. chemotherapy, immunotherapy, and ionizing radiation in melanoma medical oncology.
  • Item
    Potentiating anti-tumor immunity with physical plasma
    (Amsterdam [u.a.] : Elsevier, 2018) Bekeschus, Sander; Clemen, Ramona; Metelmann, Hans-Robert
    The age of checkpoint blockage emphasizes the importance of adaptive antitumor immune responses. This arm of immune defense is key in recognizing molecules via specific receptors to distinguish between self and foreign or mutated structures. Antigen-specific T-cells identify non-self epitopes, tumor-associated antigens, or neoepitopes on tumors to carry out attacks on malignant cells. Although tumor cells are immunogenic by nature, they have developed strategies to evade an immune response that would otherwise facilitate their clearance. Several steps in antitumor immunity utilize the toxic and signaling properties of reactive oxygen and nitrogen species (ROS/RNS). Cold physical plasmas are potent generators of such ROS/RNS and are demonstrated to have profound antitumor activity in vitro and in vivo. Here we discuss recent evidence and concepts on how plasmas may boost immunity against pathological cells. Specifically, plasma treatment may enhance the immunogenicity of tumor cells by induction of the immunogenic cancer cell death (ICD) and redox regulation of the antigen-presenting machinery. These aspects provide a rationale for localized plasma-based onco-therapies enhancing systemic antitumor immunity, which eventually may target distant tumor metastasis in cancer patients in a T-cell dependent fashion.