Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China

2018, Chen, Jie, Wu, Zhijun, Augustin-Bauditz, Stefanie, Grawe, Sarah, Hartmann, Markus, Pei, Xiangyu, Liu, Zirui, Ji, Dongsheng, Wex, Heike

Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the atmospheric number concentration of INP (NINP) in the range from -6 to -25 °C in Beijing. No correlations between NINP and either PM2.5 or black carbon mass concentrations were found, although both varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between NINP and either total particle number concentration or number concentrations for particles with diameters > 500 nm. Furthermore, there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined temperature range.

Loading...
Thumbnail Image
Item

Global analysis of continental boundary layer new particle formation based on long-term measurements

2018, Nieminen, Tuomo, Kerminen, Veli-Matti, Petäjä, Tuukka, Aalto, Pasi P., Arshinov, Mikhail, Asmi, Eija, Baltensperger, Urs, Beddows, David C. S., Beukes, Johan Paul, Collins, Don, Ding, Aijun, Harrison, Roy M., Henzing, Bas, Hooda, Rakesh, Hu, Min, Hõrrak, Urmas, Kivekäs, Niku, Komsaare, Kaupo, Krejci, Radovan, Kristensson, Adam, Laakso, Lauri, Laaksonen, Ari, Leaitch, W. Richard, Lihavainen, Heikki, Mihalopoulos, Nikolaos, Németh, Zoltán, Nie, Wei, O'Dowd, Colin, Salma, Imre, Sellegri, Karine, Svenningsson, Birgitta, Swietlicki, Erik, Tunved, Peter, Ulevicius, Vidmantas, Vakkari, Ville, Vana, Marko, Wiedensohler, Alfred, Wu, Zhijun, Virtanen, Annele, Kulmala, Markku

Atmospheric new particle formation (NPF) is an important phenomenon in terms of global particle number concentrations. Here we investigated the frequency of NPF, formation rates of 10 nm particles, and growth rates in the size range of 10–25 nm using at least 1 year of aerosol number size-distribution observations at 36 different locations around the world. The majority of these measurement sites are in the Northern Hemisphere. We found that the NPF frequency has a strong seasonal variability. At the measurement sites analyzed in this study, NPF occurs most frequently in March–May (on about 30 % of the days) and least frequently in December-February (about 10 % of the days). The median formation rate of 10 nm particles varies by about 3 orders of magnitude (0.01–10 cm−3 s−1) and the growth rate by about an order of magnitude (1–10 nm h−1). The smallest values of both formation and growth rates were observed at polar sites and the largest ones in urban environments or anthropogenically influenced rural sites. The correlation between the NPF event frequency and the particle formation and growth rate was at best moderate among the different measurement sites, as well as among the sites belonging to a certain environmental regime. For a better understanding of atmospheric NPF and its regional importance, we would need more observational data from different urban areas in practically all parts of the world, from additional remote and rural locations in North America, Asia, and most of the Southern Hemisphere (especially Australia), from polar areas, and from at least a few locations over the oceans.

Loading...
Thumbnail Image
Item

Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations

2018, Sun, J., Birmili, W., Hermann, M., Tuch, T., Weinhold, K., Spindler, G., Schladitz, A., Bastian, S., Löschau, G., Cyrys, J., Gu, J., Flentje, H., Briel, B., Asbac, C., Kaminski, H., Ries, L., Sohme, R., Gerwig, H., Wirtz, K., Meinhardt, F., Schwerin, A., Bath, O., Ma, N., Wiedensohler, A.

This work reports the first statistical analysis of multi-annual data on tropospheric aerosols from the German Ultrafine Aerosol Network (GUAN). Compared to other networks worldwide, GUAN with 17 measurement locations has the most sites equipped with particle number size distribution (PNSD) and equivalent black carbon (eBC) instruments and the most site categories in Germany ranging from city street/roadside to High Alpine. As we know, the variations of eBC and particle number concentration (PNC) are influenced by several factors such as source, transformation, transport and deposition. The dominant controlling factor for different pollutant parameters might be varied, leading to the different spatio-temporal variations among the measured parameters. Currently, a study of spatio-temporal variations of PNSD and eBC considering the influences of both site categories and spatial scale is still missing. Based on the multi-site dataset of GUAN, the goal of this study is to investigate how pollutant parameters may interfere with spatial characteristics and site categories. © 2019 The Authors