Search Results

Now showing 1 - 10 of 12
Loading...
Thumbnail Image
Item

Surviving the surf: The tribomechanical properties of the periostracum of Mytilus sp

2014, Wählisch, Felix C., Peter, Nicolas J., Torrents Abad, Oscar, Oliveira, Mariana V.G., Schneider, Andreas S., Schmahl, Wolfgang, Griesshaber, Erika, Bennewitz, Roland

We investigated the friction and wear behavior as well as the mechanical properties of the periostracum of Mytilus sp. Tribological properties were determined with a reciprocal sliding microtribometer, while mechanical characterization was performed using a nanoindenter. Measurements were performed in dry and wet conditions. On the dry periostracum we found a low friction coefficient of 0.078 ± 0.007 on the young parts and a higher one of 0.63 ± 0.02 on the old parts of the shell. Under wet, saline, conditions we only observed one average coefficient of friction of 0.37 ± 0.01. Microscopic ex situ analysis indicated that dry periostracum wore rather rapidly by plowing and fatigue, while it exhibited a high wear resistance when immersed in salt water. The Young’s modulus and hardness of the periostracum were also investigated in both dry and wet conditions. Under dry conditions the Young’s modulus of the periostracum was 8 ± 3 GPa, while under wet conditions it was 0.21 ± 0.05 GPa. The hardness of dry periostracum samples was 353 ± 127 MPa, whereas the hardness of wet samples was 5 ± 2 MPa. It was found that, in the wet state, viscous behavior plays a significant role in the mechanical response of the periostracum. Our results strongly indicate that the periostracum can provide an important contribution to the overall wear resistance of Mytilus sp. shell.

Loading...
Thumbnail Image
Item

The mTOR and PP2A pathways regulate PHD2 phosphorylation to Fine-Tune HIF1α levels and colorectal cancer cell survival under hypoxia

2017, Di Conza, Giusy, Cafarello, Sarah Trusso, Loroch, Stefan, Mennerich, Daniela, Deschoemaeker, Sofie, Di Matteo, Mario, Ehling, Manuel, Gevaert, Kris, Prenen, Hans, Zahedi, Rene Peiman, Sickmann, Albert, Kietzmann, Thomas, Moretti, Fabiola, Mazzone, Massimiliano

Oxygen-dependent HIF1α hydroxylation and degradation are strictly controlled by PHD2. In hypoxia, HIF1α partly escapes degradation because of low oxygen availability. Here, we show that PHD2 is phosphorylated on serine 125 (S125) by the mechanistic target of rapamycin (mTOR) downstream kinase P70S6K and that this phosphorylation increases its ability to degrade HIF1α. mTOR blockade in hypoxia by REDD1 restrains P70S6K and unleashes PP2A phosphatase activity. Through its regulatory subunit B55α, PP2A directly dephosphorylates PHD2 on S125, resulting in a further reduction of PHD2 activity that ultimately boosts HIF1α accumulation. These events promote autophagy-mediated cell survival in colorectal cancer (CRC) cells. B55α knockdown blocks neoplastic growth of CRC cells in vitro and in vivo in a PHD2-dependent manner. In patients, CRC tissue expresses higher levels of REDD1, B55α, and HIF1α but has lower phospho-S125 PHD2 compared with a healthy colon. Our data disclose a mechanism of PHD2 regulation that involves the mTOR and PP2A pathways and controls tumor growth.

Loading...
Thumbnail Image
Item

Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century

2016, Kriegler, Elmar, Bauer, Nico, Popp, Alexander, Humpenöder, Florian, Leimbach, Marian, Strefler, Jessica, Baumstark, Lavinia, Bodirsky, Benjamin Leon, Hilaire, Jérôme, Klein, David, Mouratiadou, Ioanna, Weindl, Isabelle, Bertram, Christoph, Dietrich, Jan-Philipp, Luderer, Gunnar, Pehl, Michaja, Pietzcker, Robert, Piontek, Franziska, Lotze-Campen, Hermann, Biewald, Anne, Bonsch, Markus, Giannousakis, Anastasis, Kreidenweis, Ulrich, Müller, Christoph, Rolinski, Susanne, Schultes, Anselm, Schwanitz, Jana, Stevanovic, Miodrag, Calvin, Katherine, Emmerling, Johannes, Fujimori, Shinichiro, Edenhofer, Ottmar

This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.

Loading...
Thumbnail Image
Item

Future air pollution in the Shared Socio-economic Pathways

2016, Rao, Shilpa, Klimont, Zbigniew, Smith, Steven J., Van Dingenen, Rita, Dentener, Frank, Bouwman, Lex, Riahi, Keywan, Amann, Markus, Bodirsky, Benjamin Leon, van Vuuren, Detlef P., Aleluia Reis, Lara, Calvin, Katherine, Drouet, Laurent, Fricko, Oliver, Fujimori, Shinichiro, Gernaat, David, Havlik, Petr, Harmsen, Mathijs, Hasegawa, Tomoko, Heyes, Chris, Hilaire, Jérôme, Luderer, Gunnar, Masui, Toshihiko, Stehfest, Elke, Strefler, Jessica, van der Sluis, Sietske, Tavoni, Massimo

Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high, central, and low pollution control ambitions over the 21st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. The resulting pollutant emission trajectories under the SSP scenarios cover a wider range than the scenarios used in previous international climate model comparisons. In the SSP3 and SSP4 scenarios, where economic, institutional and technological limitations slow air quality improvements, global pollutant emissions over the 21st century can be comparable to current levels. Pollutant emissions in the SSP1 scenarios fall to low levels due to the assumption of technological advances and successful global action to control emissions.

Loading...
Thumbnail Image
Item

How to minimize dye-induced perturbations while studying biomembrane structure and dynamics: PEG linkers as a rational alternative

2018, Mobarak, Edouard, Javanainen, Matti, Kulig, Waldemar, Honigmann, Alf, Sezgin, Erdinc, Aho, Noora, Eggeling, Christian, Rog, Tomasz, Vattulainen, Ilpo

Organic dye-tagged lipid analogs are essential for many fluorescence-based investigations of complex membrane structures, especially when using advanced microscopy approaches. However, lipid analogs may interfere with membrane structure and dynamics, and it is not obvious that the properties of lipid analogs would match those of non-labeled host lipids. In this work, we bridged atomistic simulations with super-resolution imaging experiments and biomimetic membranes to assess the performance of commonly used sphingomyelin-based lipid analogs. The objective was to compare, on equal footing, the relative strengths and weaknesses of acyl chain labeling, headgroup labeling, and labeling based on poly-ethyl-glycol (PEG) linkers in determining biomembrane properties. We observed that the most appropriate strategy to minimize dye-induced membrane perturbations and to allow consideration of Brownian-like diffusion in liquid-ordered membrane environments is to decouple the dye from a membrane by a PEG linker attached to a lipid headgroup. Yet, while the use of PEG linkers may sound a rational and even an obvious approach to explore membrane dynamics, the results also suggest that the dyes exploiting PEG linkers interfere with molecular interactions and their dynamics. Overall, the results highlight the great care needed when using fluorescent lipid analogs, in particular accurate controls.

Loading...
Thumbnail Image
Item

Datasets from a vapor diffusion mineral precipitation protocol for Dictyostelium stalks

2016, Eder, Magdalena, Muth, Christina, Weiss, Ingrid M.

Datasets from a slow carbonate vapor diffusion and mineral precipitation protocol for Dictyostelium ECM and cellulose stalks show examples for composite materials obtained by an in vitro approach, which differs substantially from the in vivo approach reported in The Journal of Structural Biology, doi: 10.1016/j.jsb.2016.03.015 [1]. Methods for obtaining the datasets include bright field transmitted light microscopy, fluorescence microscopy, LC-PolScope birefringence microscopy, variable pressure scanning electron microscopy (VP-SEM/ESEM), and Raman imaging spectroscopy.

Loading...
Thumbnail Image
Item

Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm

2016, van Vuuren, Detlef P., Stehfest, Elke, Gernaat, David E.H.J., Doelman, Jonathan C., van den Berg, Maarten, Harmsen, Mathijs, de Boer, Harmen Sytze, Bouwman, Lex F., Daioglou, Vassilis, Edelenbosch, Oreane Y., Girod, Bastien, Kram, Tom, Lassaletta, Luis, Lucas, Paul L., van Meijl, Hans, Müller, Christoph, van Ruijven, Bas J., van der Sluis, Sietske, Tabeau, Andrzej

This paper describes the possible developments in global energy use and production, land use, emissions and climate changes following the SSP1 storyline, a development consistent with the green growth (or sustainable development) paradigm (a more inclusive development respecting environmental boundaries). The results are based on the implementation using the IMAGE 3.0 integrated assessment model and are compared with a) other IMAGE implementations of the SSPs (SSP2 and SSP3) and b) the SSP1 implementation of other integrated assessment models. The results show that a combination of resource efficiency, preferences for sustainable production methods and investment in human development could lead to a strong transition towards a more renewable energy supply, less land use and lower anthropogenic greenhouse gas emissions in 2100 than in 2010, even in the absence of explicit climate policies. At the same time, climate policy would still be needed to reduce emissions further, in order to reduce the projected increase of global mean temperature from 3 Â°C (SSP1 reference scenario) to 2 or 1.5 Â°C (in line with current policy targets). The SSP1 storyline could be a basis for further discussions on how climate policy can be combined with achieving other societal goals.

Loading...
Thumbnail Image
Item

Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability

2017, Hempel, Sabrina, König, Marcel, Menz, Christoph, Janke, David, Amon, Barbara, Banhazi, Thomas M., Estellés, Fernando, Amon, Thomas

The microclimatic conditions in dairy buildings affect animal welfare and gaseous emissions. Measurements are highly variable due to the inhomogeneous distribution of heat and humidity sources (related to farm management) and the turbulent inflow (associated with meteorologic boundary conditions). The selection of the measurement strategy (number and position of the sensors) and the analysis methodology adds to the uncertainty of the applied measurement technique. To assess the suitability of different sensor positions, in situations where monitoring in the direct vicinity of the animals is not possible, we collected long-term data in two naturally ventilated dairy barns in Germany between March 2015 and April 2016 (horizontal and vertical profiles with 10 to 5 min temporal resolution). Uncertainties related to the measurement setup were assessed by comparing the device outputs under lab conditions after the on-farm experiments. We found out that the uncertainty in measurements of relative humidity is of particular importance when assessing heat stress risk and resulting economic losses in terms of temperature-humidity index. Measurements at a height of approximately 3 m–3.5 m turned out to be a good approximation for the microclimatic conditions in the animal occupied zone (including the air volume close to the emission active zone). However, further investigation along this cross-section is required to reduce uncertainties related to the inhomogeneous distribution of humidity. In addition, a regular sound cleaning (and if possible recalibration after few months) of the measurement devices is crucial to reduce the instrumentation uncertainty in long-term monitoring of relative humidity in dairy barns. © 2017 The Authors

Loading...
Thumbnail Image
Item

Gli protein activity is controlled by multisite phosphorylation in vertebrate hedgehog signaling

2013, Niewiadomski, Pawel, Kong, Jennifer H., Ahrends, Robert, Ma, Yan, Humke, Eric W., Khan, Sohini, Teruel, Mary N., Novitch, Bennett G., Rohatgi, Rajat

Gli proteins are transcriptional effectors of the Hedgehog (Hh) pathway in both normal development and cancer. We describe a program of multisite phosphorylation that regulates the conversion of Gli proteins into transcriptional activators. In the absence of Hh ligands, Gli activity is restrained by the direct phosphorylation of six conserved serine residues by protein kinase A (PKA), a master negative regulator of the Hh pathway. Activation of signaling leads to a global remodeling of the Gli phosphorylation landscape: the PKA target sites become dephosphorylated, while a second cluster of sites undergoes phosphorylation. The pattern of Gli phosphorylation can regulate Gli transcriptional activity in a graded fashion, suggesting a phosphorylation-based mechanism for how a gradient of Hh signaling in a morphogenetic field can be converted into a gradient of transcriptional activity.

Loading...
Thumbnail Image
Item

The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview

2016, Riahi, Keywan, van Vuuren, Detlef P., Kriegler, Elmar, Edmonds, Jae, O’Neill, Brian C., Fujimori, Shinichiro, Bauer, Nico, Calvin, Katherine, Dellink, Rob, Fricko, Oliver, Lutz, Wolfgang, Popp, Alexander, Crespo Cuaresma, Jesus, KC, Samir, Leimbach, Marian, Jiang, Leiwen, Kram, Tom, Rao, Shilpa, Emmerling, Johannes, Ebi, Kristie, Hasegawa, Tomoko, Havlik, Petr, Humpenöder, Florian, Aleluia Da Silva, Lara, Smith, Steve, Stehfest, Elke, Bosetti, Valentina, Eom, Jiyong, Gernaat, David, Masui, Toshihiko, Rogelj, Joeri, Strefler, Jessica, Drouet, Laurent, Krey, Volker, Luderer, Gunnar, Harmsen, Mathijs, Takahashi, Kiyoshi, Baumstark, Lavinia, Doelman, Jonathan C., Kainuma, Mikiko, Klimont, Zbigniew, Marangoni, Giacomo, Lotze-Campen, Hermann, Obersteiner, Michael, Tabeau, Andrzej, Tavoni, Massimo

This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 Â°C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).