Search Results

Now showing 1 - 10 of 27
  • Item
    Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts
    (Orchard Park : Impact Journals, 2014) Waldera-Lupa, Daniel M.; Kalfalah, Faiza; Florea, Ana-Maria; Sass, Steffen; Kruse, Fabian; Rieder, Vera; Tigges, Julia; Fritsche, Ellen; Krutmann, Jean; Busch, Hauke; Boerries, Melanie; Meyer, Helmut E.; Boege, Fritz; Theis, Fabian; Reifenberger, Guido; Stühle, Kai
    We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts' aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77 % of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging.
  • Item
    Critical appraisal concerning “Wearable cardioverter defibrillators for the prevention of sudden cardiac arrest: A health technology assessment and patient focus group study”
    (Macclesfield [u.a.] : Dove Medical Press, 2018) Sperzel, Johannes; Staudacher, Ingo; Goeing, Olaf; Stockburger, Martin; Meyer, Thorsten; Oliveira Gonçalves, Ana Sofia; Sydow, Hanna; Schoenfelder, Tonio; Amelung, Volker Eric
    [no abstract available]
  • Item
    Comments on the authors’ reply to the critical appraisal concerning “Wearable cardioverter defibrillators for the prevention of sudden cardiac arrest: A health technology assessment and patient focus group study”
    (Macclesfield [u.a.] : Dove Medical Press, 2018) Sperzel, Johannes; Staudacher, Ingo; Goeing, Olaf; Stockburger, Martin; Meyer, Thorsten; Oliveira Goncalves, Ana Sofia; Sydow, Hanna; Schoenfelder, Tonio; Amelung, Volker Eric
    [no abstract available]
  • Item
    Improving Accuracy and Temporal Resolution of Learning Curve Estimation for within- and across-Session Analysis
    (San Francisco, California, US : PLOS, 2016) Deliano, Matthias; Tabelow, Karsten; König, Reinhard; Polzehl, Jörg
    Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning.
  • Item
    Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133)
    (San Francisco, California, US : PLOS, 2016) Thamm, Kristina; Graupner, Sylvi; Werner, Carsten; Huttner, Wieland B.; Corbeil, Denis; Nabi, Ivan R
    The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.
  • Item
    Effect on healthcare utilization and costs of spinal manual therapy for acute low back pain in routine care: A propensity score matched cohort study
    (San Francisco, California, US : PLOS, 2017) Walker, Jochen; Mertens, Ulf Kai; Schmidt, Carsten Oliver; Chenot, Jean-François
    Spinal manual therapy (SMT) is a popular treatment option for low back pain (LBP). The aim of our analysis was to evaluate the effects of manual therapy delivered by general practitioners and ambulatory orthopedic surgeons in routine care on follow up consultations, sick leave, health service utilization and costs for acute LBP compared to matched patients not receiving manual therapy. This is a propensity score matched cohort study based on health claims data. We identified a total of 113.652 adult patients with acute LBP and no coded red flags of whom 21.021 (18%) received SMT by physicians. In the final analysis 17.965 patients in each group could be matched. Balance on patients' coded characteristics, comorbidity and prior health service utilization was achieved. The provision of SMT for acute LBP had no relevant impact on follow up visits and days of sick leave for LBP in the index billing period and the following year. SMT was associated with a higher proportion of imaging studies for LBP (30.6% vs. 23%, SMD: 0.164 [95% CI 0.143-0.185]). SMT did not lead to meaningful savings by replacing other health services for LBP. SMT for acute non-specific LBP in routine care was not clinically meaningful effective to reduce sick leave and reconsultation rates compared to no SMT and did not lead to meaningful savings by replacing other health services from the perspective of health insurance. This does not imply that SMT is ineffective but might reflect a problem with selection of suitable patients and the quality and quantity of SMT in routine care. National Manual Medicine societies should state clearly that imaging is not routinely needed prior to SMT in patients with low suspicion of presence of red flags and monitor the quality of provided services.
  • Item
    In vitro model of metastasis to bone marrow mediates prostate cancer castration resistant growth through paracrine and extracellular matrix factors
    (San Francisco, CA : Public Library of Science, 2012) Lescarbeau, R.M.; Seib, F.P.; Prewitz, M.; Werner, C.; Kaplan, D.L.
    The spread of prostate cancer cells to the bone marrow microenvironment and castration resistant growth are key steps in disease progression and significant sources of morbidity. However, the biological significance of mesenchymal stem cells (MSCs) and bone marrow derived extracellular matrix (BM-ECM) in this process is not fully understood. We therefore established an in vitro engineered bone marrow tissue model that incorporates hMSCs and BM-ECM to facilitate mechanistic studies of prostate cancer cell survival in androgen-depleted media in response to paracrine factors and BM-ECM. hMSC-derived paracrine factors increased LNCaP cell survival, which was in part attributed to IGFR and IL6 signaling. In addition, BM-ECM increased LNCaP and MDA-PCa-2b cell survival in androgen-depleted conditions, and induced chemoresistance and morphological changes in LNCaPs. To determine the effect of BM-ECM on cell signaling, the phosphorylation status of 46 kinases was examined. Increases in the phosphorylation of MAPK pathway-related proteins as well as sustained Akt phosphorylation were observed in BM-ECM cultures when compared to cultures grown on plasma-treated polystyrene. Blocking MEK1/2 or the PI3K pathway led to a significant reduction in LNCaP survival when cultured on BM-ECM in androgen-depleted conditions. The clinical relevance of these observations was determined by analyzing Erk phosphorylation in human bone metastatic prostate cancer versus non-metastatic prostate cancer, and increased phosphorylation was seen in the metastatic samples. Here we describe an engineered bone marrow model that mimics many features observed in patients and provides a platform for mechanistic in vitro studies.
  • Item
    Antimicrobial Efficacy of Two Surface Barrier Discharges with Air Plasma against In Vitro Biofilms
    (San Francisco, CA : Public Library of Science, 2013) Matthes, R.; Bender, C.; Schlüter, R.; Koban, I.; Bussiahn, R.; Reuter, S.; Lademann, J.; Weltmann, K.-D.; Kramer, A.
    The treatment of infected wounds is one possible therapeutic aspect of plasma medicine. Chronic wounds are often associated with microbial biofilms which limit the efficacy of antiseptics. The present study investigates two different surface barrier discharges with air plasma to compare their efficacy against microbial biofilms with chlorhexidine digluconate solution (CHX) as representative of an important antibiofilm antiseptic. Pseudomonas aeruginosa SG81 and Staphylococcus epidermidis RP62A were cultivated on polycarbonate discs. The biofilms were treated for 30, 60, 150, 300 or 600 s with plasma or for 600 s with 0.1% CHX, respectively. After treatment, biofilms were dispensed by ultrasound and the antimicrobial effects were determined as difference in the number of the colony forming units by microbial culture. A high antimicrobial efficacy on biofilms of both plasma sources in comparison to CHX treatment was shown. The efficacy differs between the used strains and plasma sources. For illustration, the biofilms were examined under a scanning electron microscope before and after treatment. Additionally, cytotoxicity was determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay with L929 mouse fibroblast cell line. The cell toxicity of the used plasma limits its applicability on human tissue to maximally 150 s. The emitted UV irradiance was measured to estimate whether UV could limit the application on human tissue at the given parameters. It was found that the UV emission is negligibly low. In conclusion, the results support the assumption that air plasma could be an option for therapy of chronic wounds.
  • Item
    Cardio-respiratory coordination increases during sleep apnea
    (San Francisco, CA : Public Library of Science (PLoS), 2014) Riedl, M.; Müller, A.; Kraemer, J.F.; Penzel, T.; Kurths, J.; Wessel, N.
    Cardiovascular diseases are the main source of morbidity and mortality in the United States with costs of more than $170 billion. Repetitive respiratory disorders during sleep are assumed to be a major cause of these diseases. Therefore, the understanding of the cardio-respiratory regulation during these events is of high public interest. One of the governing mechanisms is the mutual influence of the cardiac and respiratory oscillations on their respective onsets, the cardiorespiratory coordination (CRC). We analyze this mechanism based on nocturnal measurements of 27 males suffering from obstructive sleep apnea syndrome. Here we find, by using an advanced analysis technique, the coordigram, not only that the occurrence of CRC is significantly more frequent during respiratory sleep disturbances than in normal respiration (p-value<10-51) but also more frequent after these events (p-value<10-15). Especially, the latter finding contradicts the common assumption that spontaneous CRC can only be observed in epochs of relaxed conditions, while our newly discovered epochs of CRC after disturbances are characterized by high autonomic stress. Our findings on the connection between CRC and the appearance of sleep-disordered events require a substantial extension of the current understanding of obstructive sleep apneas and hypopneas.
  • Item
    Sleep apnea-hypopnea quantification by cardiovascular data analysis
    (San Francisco, CA : Public Library of Science (PLoS), 2014) Camargo, S.; Riedl, M.; Anteneodo, C.; Kurths, J.; Penzel, T.; Wessel, N.
    Sleep disorders are a major risk factor for cardiovascular diseases. Sleep apnea is the most common sleep disturbance and its detection relies on a polysomnography, i.e., a combination of several medical examinations performed during a monitored sleep night. In order to detect occurrences of sleep apnea without the need of combined recordings, we focus our efforts on extracting a quantifier related to the events of sleep apnea from a cardiovascular time series, namely systolic blood pressure (SBP). Physiologic time series are generally highly nonstationary and entrap the application of conventional tools that require a stationary condition. In our study, data nonstationarities are uncovered by a segmentation procedure which splits the signal into stationary patches, providing local quantities such as mean and variance of the SBP signal in each stationary patch, as well as its duration L. We analysed the data of 26 apneic diagnosed individuals, divided into hypertensive and normotensive groups, and compared the results with those of a control group. From the segmentation procedure, we identified that the average duration 〈L〉, as well as the average variance 〈σ2〉, are correlated to the apnea-hypoapnea index (AHI), previously obtained by polysomnographic exams. Moreover, our results unveil an oscillatory pattern in apneic subjects, whose amplitude S∗ is also correlated with AHI. All these quantities allow to separate apneic individuals, with an accuracy of at least 79%. Therefore, they provide alternative criteria to detect sleep apnea based on a single time series, the systolic blood pressure.