Search Results

Now showing 1 - 10 of 41
Loading...
Thumbnail Image
Item

Water footprint analysis for the assessment of milk production in Brandenburg (Germany)

2010, Drastig, K., Prochnow, A., Kraatz, S., Klauss, H., Plöchl, M.

The working group "Adaptation to Climate Change" at the Leibniz-Institute for Agricultural Engineering Potsdam-Bornim (ATB) is introduced. This group calculates the water footprint for agricultural processes and farms, distinguished into green water footprint, blue water footprint, and dilution water footprint. The green and blue water demand of a dairy farm plays a pivotal role in the regional water balance. Considering already existing and forthcoming climate change effects there is a need to determine the water cycle in the field and in housing for process chain optimisation for the adaptation to an expected increasing water scarcity. Resulting investments to boost water productivity and to improve water use efficiency in milk production are two pathways to adapt to climate change effects. In this paper the calculation of blue water demand for dairy farming in Brandenburg (Germany) is presented. The water used for feeding, milk processing, and servicing of cows over the time period of ten years was assessed in our study. The preliminary results of the calculation of the direct blue water footprint shows a decreasing water demand in the dairy production from the year 1999 with 5.98×109 L/yr to a water demand of 5.00×109 L/yr in the year 2008 in Brandenburg because of decreasing animal numbers and an improved average milk yield per cow. Improved feeding practices and shifted breeding to greater-volume producing Holstein-Friesian cow allow the production of milk in a more water sustainable way. The mean blue water consumption for the production of 1 kg milk in the time period between 1999 to 2008 was 3.94±0.29 L. The main part of the consumed water seems to stem from indirect used green water for the production of feed for the cows.

Loading...
Thumbnail Image
Item

Atmospheric new particle formation at the research station Melpitz, Germany: Connection with gaseous precursors and meteorological parameters

2018, Größ, Johannes, Hamed, Amar, Sonntag, André, Spindler, Gerald, Manninen, Hanna Elina, Nieminen, Tuomo, Kulmala, Markku, Hõrrak, Urmas, Plass-Dülmer, Christian, Wiedensohler, Alfred, Birmili, Wolfram

This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2-20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.

Loading...
Thumbnail Image
Item

Mercury distribution in the upper troposphere and lowermost stratosphere according to measurements by the IAGOS-CARIBIC observatory: 2014-2016

2018, Slemr, Franz, Weigelt, Andreas, Ebinghaus, Ralf, Bieser, Johannes, Brenninkmeijer, Carl A. M., Rauthe-Schöch, Armin, Hermann, Markus, Martinsson, Bengt G., van Velthoven, Peter, Bönisch, Harald, Neumaier, Marco, Zahn, Andreas, Ziereis, Helmut

Mercury was measured onboard the IAGOS-CARIBIC passenger aircraft from May 2005 until February 2016 during near monthly sequences of mostly four intercontinental flights from Germany to destinations in North and South America, Africa and South and East Asia. Most of these mercury data were obtained using an internal default signal integration procedure of the Tekran instrument but since April 2014 more precise and accurate data were obtained using post-flight manual integration of the instrument raw signal. In this paper we use the latter data. Increased upper tropospheric total mercury (TM) concentrations due to large scale biomass burning were observed in the upper troposphere (UT) at the equator and southern latitudes during the flights to Latin America and South Africa in boreal autumn (SON) and boreal winter (DJF). TM concentrations in the lowermost stratosphere (LMS) decrease with altitude above the thermal tropopause but the gradient is less steep than reported before. Seasonal variation of the vertical TM distribution in the UT and LMS is similar to that of other trace gases with surface sources and stratospheric sinks. Speciation experiments suggest comparable TM and gaseous elementary mercury (GEM) concentrations at and below the tropopause leaving little space for Hg2+ (TM-thinsp;GEM) being the dominating component of TM here. In the stratosphere significant GEM concentrations were found to exist up to 4 km altitude above the thermal tropopause. Correlations with N2O as a reference tracer suggest stratospheric lifetimes of 72±37 and 74±27 years for TM and GEM, respectively, comparable to the stratospheric lifetime of COS. This coincidence, combined with pieces of evidence from us and other researchers, corroborates the hypothesis that Hg2+ formed by oxidation in the stratosphere attaches to sulfate particles formed mainly by oxidation of COS and is removed with them from the stratosphere by air mass exchange, gravitational sedimentation and cloud scavenging processes.

Loading...
Thumbnail Image
Item

Agricultural Water Management in Brandenburg

2011, Drastig, Katrin, Prochnow, Annette, Baumecker, Michael, Berg, Werner, Brunsch, Reiner

The present study explores whether regional water resources can be used more efficiently by Brandenburg’s agricultural systems. A systematic analysis of measures to raise the water efficiency follows the description of agriculture in Brandenburg today. Brandenburg’s agricultural systems are separated into three sections: soils, plant production and livestock farming. Within these sections measures to increase water efficiency are listed and analysed with reference to five objective criteria for raising water use efficiency. In the soil section the measures soil tillage and humus conservation management are assigned to the criteria. The following fields in the plant production section are similarly investigated: breeding, seeding, fertilisation, tactically chosen crops, avoidance of competition by herbicide use and efficient irrigation practices as well as watersaving storage and cleaning of field crops. In livestock farming the supply of drinking water and cleaning and cooling processes are analysed. In view of the complexity of the agricultural farming systems in Brandenburg, general measures to raise water use efficiency could not be derived. Sitespecific tillage practices and crop patterns adjusted to the recent weather conditions may reflect the specific diversity of Brandenburg more efficiently.

Loading...
Thumbnail Image
Item

Particle hygroscopicity during atmospheric new particle formation events: Implications for the chemical species contributing to particle growth

2013, Wu, Z., Birmili, W., Poulain, L., Poulain, L., Merkel, M., Fahlbusch, B., Van Pinxteren, D., Herrmann, H., Wiedensohler, A.

This study examines the hygroscopicity of newly formed particles (diameters range 25-45 nm) during two atmospheric new particle formation (NPF) events in the German mid-level mountains during the Hill Cap Cloud Thuringia 2010 (HCCT-2010) field experiment. At the end of the NPF event involving clear particle growth, we measured an unusually high soluble particle fraction of 58.5% at 45 nm particle size. The particle growth rate contributed through sulfuric acid condensation only accounts for around 6.5% of the observed growth rate. Estimations showed that sulfuric acid condensation explained, however, only around 10% of that soluble particle fraction. Therefore, the formation of additional water-soluble matter appears imperative to explain the missing soluble fraction. Although direct evidence is missing, we consider water-soluble organics as candidates for this mechanism. For the case with clear growth process, the particle growth rate was determined by two alternative methods based on tracking the mode diameter of the nucleation mode. The mean particle growth rate obtained from the inter-site data comparison using Lagrangian consideration is 3.8 (± 2.6) nm h-1. During the same period, the growth rate calculated based on one site data is 5.0 nm h-1 using log-normal distribution function method. In light of the fact that considerable uncertainties could be involved in both methods, we consider both estimated growth rates consistent.

Loading...
Thumbnail Image
Item

The HD(CP)2 Observational Prototype Experiment (HOPE) - An overview

2017, Macke, Andreas, Seifert, Patric, Baars, Holger, Barthlott, Christian, Beekmans, Christoph, Behrendt, Andreas, Bohn, Birger, Brueck, Matthias, Bühl, Johannes, Crewell, Susanne, Damian, Thomas, Deneke, Hartwig, Düsing, Sebastian, Foth, Andreas, Di Girolamo, Paolo, Hammann, Eva, Heinze, Rieke, Hirsikko, Anne, Kalisch, John, Kalthoff, Norbert, Kinne, Stefan, Kohler, Martin, Löhnert, Ulrich, Madhavan, Bomidi Lakshmi, Maurer, Vera, Muppa, Shravan Kumar, Schween, Jan, Serikov, Ilya, Siebert, Holger, Simmer, Clemens, Späth, Florian, Steinke, Sandra, Träumner, Katja, Trömel, Silke, Wehner, Birgit, Wieser, Andreas, Wulfmeyer, Volker, Xie, Xinxin

The HD(CP)2 Observational Prototype Experiment (HOPE) was performed as a major 2-month field experiment in Jülich, Germany, in April and May 2013, followed by a smaller campaign in Melpitz, Germany, in September 2013. HOPE has been designed to provide an observational dataset for a critical evaluation of the new German community atmospheric icosahedral non-hydrostatic (ICON) model at the scale of the model simulations and further to provide information on land-surface-atmospheric boundary layer exchange, cloud and precipitation processes, as well as sub-grid variability and microphysical properties that are subject to parameterizations. HOPE focuses on the onset of clouds and precipitation in the convective atmospheric boundary layer. This paper summarizes the instrument set-ups, the intensive observation periods, and example results from both campaigns.

HOPE-Jülich instrumentation included a radio sounding station, 4 Doppler lidars, 4 Raman lidars (3 of them provide temperature, 3 of them water vapour, and all of them particle backscatter data), 1 water vapour differential absorption lidar, 3 cloud radars, 5 microwave radiometers, 3 rain radars, 6 sky imagers, 99 pyranometers, and 5 sun photometers operated at different sites, some of them in synergy. The HOPE-Melpitz campaign combined ground-based remote sensing of aerosols and clouds with helicopter- and balloon-based in situ observations in the atmospheric column and at the surface.

HOPE provided an unprecedented collection of atmospheric dynamical, thermodynamical, and micro- and macrophysical properties of aerosols, clouds, and precipitation with high spatial and temporal resolution within a cube of approximately 10 × 10 × 10km3. HOPE data will significantly contribute to our understanding of boundary layer dynamics and the formation of clouds and precipitation. The datasets have been made available through a dedicated data portal.

First applications of HOPE data for model evaluation have shown a general agreement between observed and modelled boundary layer height, turbulence characteristics, and cloud coverage, but they also point to significant differences that deserve further investigations from both the observational and the modelling perspective.

Loading...
Thumbnail Image
Item

Multiresolution analysis of the spatiotemporal variability in global radiation observed by a dense network of 99 pyranometers

2017, Madhavan, Bomidi Lakshmi, Deneke, Hartwig, Witthuhn, Jonas, Macke, Andreas

The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100-m to 10-km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1-3-ming-1 and points separated by more than 1-km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10-km-×-10-km and averaging periods of 1.5-3-h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2-% (broken clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14-23 (clear), 8-26 (cirrus), 4-23 (overcast), and 31-79-Wg-mg-2 (broken clouds) from domain averages ranging from 1-km-×-1-km to 10-km-×-10-km in area.

Loading...
Thumbnail Image
Item

LITOS - A new balloon-borne instrument for fine-scale turbulence soundings in the stratosphere

2011, Theuerkauf, A., Gerding, M., Lübken, F.-J.

We have developed a new compact balloon payload called LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) for high resolution wind turbulence soundings in the stratosphere up to 35 km altitude. The wind measurements are performed using a constant temperature anemometer (CTA) with a vertical resolution of ∼2.5 mm, i.e. 2 kHz sampling rate at 5 m/s ascent speed. Thereby, for the first time, it is possible to study the entire turbulence spectrum down to the viscous subrange in the stratosphere. Including telemetry, housekeeping, batteries and recovery unit, the payload weighs less than 5 kg and can be launched from any radiosonde station. Since autumn 2007, LITOS has been successfully launched several times from the Leibniz-Institute of Atmospheric Physics (IAP) in Kühlungsborn, Germany (54° N, 12° E). Two additional soundings were carried out in 2008 and 2009 in Kiruna, Sweden (67° N, 21° E) as part of the BEXUS program (Balloon-borne EXperiments for University Students). We describe here the basic principle of CTA measurements and prove the validity of this method in the stratosphere. A first case study allows a clear distinction between non-turbulent regions and a turbulent layer with a thickness of some tens of meters. Since our measurements cover the transition between the inertial and viscous subrange, energy dissipation rates can be calculated with high reliability.

Loading...
Thumbnail Image
Item

Ship-borne aerosol profiling with lidar over the Atlantic Ocean: From pure marine conditions to complex dust-smoke mixtures

2018, Bohlmann, S., Baars, H., Radenz, M., Engelmann, R., Macke, A.

The multi-wavelength Raman lidar PollyXT has been regularly operated aboard the research vessel Polarstern on expeditions across the Atlantic Ocean from north to south and vice versa. The lidar measurements of the RV Polarstern cruises PS95 from Bremerhaven, Germany, to Cape Town, Republic of South Africa (November 2015), and PS98 from Punta Arenas, Chile, to Bremerhaven, Germany (April/May 2016), are presented and analysed in detail. The latest set-up of PollyXT allows improved coverage of the marine boundary layer (MBL) due to an additional near-range receiver. Three case studies provide an overview of the aerosol detected over the Atlantic Ocean. In the first case, marine conditions were observed near South Africa on the autumn cruise PS95. Values of optical properties (depolarisation ratios close to zero, lidar ratios of 23 sr at 355 and 532 nm) within the MBL indicate pure marine aerosol. A layer of dried marine aerosol, indicated by an increase of the particle depolarisation ratio to about 10% at 355 nm (9% at 532 nm) and thus confirming the non-sphericity of these particles, could be detected on top of the MBL. On the same cruise, an almost pure Saharan dust plume was observed near the Canary Islands, presented in the second case. The third case deals with several layers of Saharan dust partly mixed with biomass-burning smoke measured on PS98 near the Cabo Verde islands. While the MBL was partly mixed with dust in the pure Saharan dust case, an almost marine MBL was observed in the third case. A statistical analysis showed latitudinal differences in the optical properties within the MBL, caused by the downmixing of dust in the tropics and anthropogenic influences in the northern latitudes, whereas the optical properties of the MBL in the Southern Hemisphere correlate with typical marine values. The particle depolarisation ratio of dried marine layers ranged between 4 and 9% at 532 nm. Night measurements from PS95 and PS98 were used to illustrate the potential of aerosol classification using lidar ratio, particle depolarisation ratio at 355 and 532 nm, and Angström exponent. Lidar ratio and particle depolarisation ratio have been found to be the main indicator for particle type, whereas the Ångström exponent is rather variable.

Loading...
Thumbnail Image
Item

Projections of global warming-induced impacts on winter storm losses in the German private household sector

2013, Held, H., Gerstengarbe, F.-W., Pardowitz, T., Pinto, J.G., Ulbrich, U., Born, K., Donat, M.G., Karremann, M.K., Leckebusch, G.C., Ludwig, P., Nissen, K.M., Österle, H., Prahl, B.F., Werner, P.C., Befort, D.J., Burghoff, O.

We present projections of winter storm-induced insured losses in the German residential building sector for the 21st century. With this aim, two structurally most independent downscaling methods and one hybrid downscaling method are applied to a 3-member ensemble of ECHAM5/MPI-OM1 A1B scenario simulations. One method uses dynamical downscaling of intense winter storm events in the global model, and a transfer function to relate regional wind speeds to losses. The second method is based on a reshuffling of present day weather situations and sequences taking into account the change of their frequencies according to the linear temperature trends of the global runs. The third method uses statistical-dynamical downscaling, considering frequency changes of the occurrence of storm-prone weather patterns, and translation into loss by using empirical statistical distributions. The A1B scenario ensemble was downscaled by all three methods until 2070, and by the (statistical-) dynamical methods until 2100. Furthermore, all methods assume a constant statistical relationship between meteorology and insured losses and no developments other than climate change, such as in constructions or claims management. The study utilizes data provided by the German Insurance Association encompassing 24 years and with district-scale resolution. Compared to 1971-2000, the downscaling methods indicate an increase of 10-year return values (i.e. loss ratios per return period) of 6-35 % for 2011-2040, of 20-30 % for 2041-2070, and of 40-55 % for 2071-2100, respectively. Convolving various sources of uncertainty in one confidence statement (data-, loss model-, storm realization-, and Pareto fit-uncertainty), the return-level confidence interval for a return period of 15 years expands by more than a factor of two. Finally, we suggest how practitioners can deal with alternative scenarios or possible natural excursions of observed losses.