Search Results

Now showing 1 - 4 of 4
  • Item
    Temporal Role Annotation for Named Entities
    (Amsterdam [u.a.] : Elsevier, 2018) Koutraki, Maria; Bakhshandegan-Moghaddam, Farshad; Sack, Harald; Fensel, Anna; de Boer, Victor; Pellegrini, Tassilo; Kiesling, Elmar; Haslhofer, Bernhard; Hollink, Laura; Schindler, Alexander
    Natural language understanding tasks are key to extracting structured and semantic information from text. One of the most challenging problems in natural language is ambiguity and resolving such ambiguity based on context including temporal information. This paper, focuses on the task of extracting temporal roles from text, e.g. CEO of an organization or head of a state. A temporal role has a domain, which may resolve to different entities depending on the context and especially on temporal information, e.g. CEO of Microsoft in 2000. We focus on the temporal role extraction, as a precursor for temporal role disambiguation. We propose a structured prediction approach based on Conditional Random Fields (CRF) to annotate temporal roles in text and rely on a rich feature set, which extracts syntactic and semantic information from text. We perform an extensive evaluation of our approach based on two datasets. In the first dataset, we extract nearly 400k instances from Wikipedia through distant supervision, whereas in the second dataset, a manually curated ground-truth consisting of 200 instances is extracted from a sample of The New York Times (NYT) articles. Last, the proposed approach is compared against baselines where significant improvements are shown for both datasets.
  • Item
    Linked Data Supported Content Analysis for Sociology
    (Berlin ; Heidelberg : Springer, 2019) Tietz, Tabea; Sack, Harald; Acosta, Maribel; Cudré-Mauroux, Philippe; Maleshkova, Maria; Pellegrini, Tassilo; Sack, Harald; Sure-Vetter, York
    Philology and hermeneutics as the analysis and interpretation of natural language text in written historical sources are the predecessors of modern content analysis and date back already to antiquity. In empirical social sciences, especially in sociology, content analysis provides valuable insights to social structures and cultural norms of the present and past. With the ever growing amount of text on the web to analyze, also numerous computer-assisted text analysis techniques and tools were developed in sociological research. However, existing methods often go without sufficient standardization. As a consequence, sociological text analysis is lacking transparency, reproducibility and data re-usability. The goal of this paper is to show, how Linked Data principles and Entity Linking techniques can be used to structure, publish and analyze natural language text for sociological research to tackle these shortcomings. This is achieved on the use case of constitutional text documents of the Netherlands from 1884 to 2016 which represent an important contribution to the European cultural heritage. Finally, the generated data is made available and re-usable as Linked Data not only for sociologists, but also for all other researchers in the digital humanities domain interested in the development of constitutions in the Netherlands.
  • Item
    The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
    (London : Nature Publ. Group, 2015) Kirklin, Scott; Saal, James E.; Meredig, Bryce; Thompson, Alex; Doak, Jeff W.; Aykol, Muratahan; Rühl, Stephan; Wolverton, Chris
    The Open Quantum Materials Database (OQMD) is a high-throughput database currently consisting of nearly 300,000 density functional theory (DFT) total energy calculations of compounds from the Inorganic Crystal Structure Database (ICSD) and decorations of commonly occurring crystal structures. To maximise the impact of these data, the entire database is being made available, without restrictions, at www.oqmd.org/download. In this paper, we outline the structure and contents of the database, and then use it to evaluate the accuracy of the calculations therein by comparing DFT predictions with experimental measurements for the stability of all elemental ground-state structures and 1,670 experimental formation energies of compounds. This represents the largest comparison between DFT and experimental formation energies to date. The apparent mean absolute error between experimental measurements and our calculations is 0.096 eV/atom. In order to estimate how much error to attribute to the DFT calculations, we also examine deviation between different experimental measurements themselves where multiple sources are available, and find a surprisingly large mean absolute error of 0.082 eV/atom. Hence, we suggest that a significant fraction of the error between DFT and experimental formation energies may be attributed to experimental uncertainties. Finally, we evaluate the stability of compounds in the OQMD (including compounds obtained from the ICSD as well as hypothetical structures), which allows us to predict the existence of ~3,200 new compounds that have not been experimentally characterised and uncover trends in material discovery, based on historical data available within the ICSD.
  • Item
    RADAR-Team stellt Testsystem auf zweitem Projekt-Workshop in Frankfurt vor
    (Karlsruhe : KIT, 2015) Potthoff, Jan; Razum, Matthias; Kraft, Angelina
    Im Rahmen des Projekts "Research Data Repository" (RADAR) wurde am 23. Juni 2015 auf dem zweiten Projekt-Workshop der aktuelle Stand des Testsystems, das zur Archivierung und Publikation von Forschungsdaten genutzt werden kann, vorgestellt. Außerdem wurden weitere Anforderungen an das System und allgemeine Fragen des Forschungsdatenmanagements mit den Workshop-Teilnehmern diskutiert.