Search Results

Now showing 1 - 2 of 2
  • Item
    Change-point detection in high-dimensional covariance structure
    (Ithaca, NY : Cornell University Library, 2018) Avanesov, Valeriy; Buzun, Nazar
    In this paper we introduce a novel approach for an important problem of break detection. Specifically, we are interested in detection of an abrupt change in the covariance structure of a high-dimensional random process – a problem, which has applications in many areas e.g., neuroimaging and finance. The developed approach is essentially a testing procedure involving a choice of a critical level. To that end a non-standard bootstrap scheme is proposed and theoretically justified under mild assumptions. Theoretical study features a result providing guaranties for break detection. All the theoretical results are established in a high-dimensional setting (dimensionality p≫n). Multiscale nature of the approach allows for a trade-off between sensitivity of break detection and localization. The approach can be naturally employed in an on-line setting. Simulation study demonstrates that the approach matches the nominal level of false alarm probability and exhibits high power, outperforming a recent approach.
  • Item
    Bayesian inference for spectral projectors of the covariance matrix
    (Ithaca, NY : Cornell University Library, 2018) Silin, Igor; Spokoiny, Vladimir
    Let X1,…,Xn be an i.i.d. sample in Rp with zero mean and the covariance matrix Σ∗. The classical PCA approach recovers the projector P∗J onto the principal eigenspace of Σ∗ by its empirical counterpart ˆPJ. Recent paper [24] investigated the asymptotic distribution of the Frobenius distance between the projectors ∥ˆPJ−P∗J∥2, while [27] offered a bootstrap procedure to measure uncertainty in recovering this subspace P∗J even in a finite sample setup. The present paper considers this problem from a Bayesian perspective and suggests to use the credible sets of the pseudo-posterior distribution on the space of covariance matrices induced by the conjugated Inverse Wishart prior as sharp confidence sets. This yields a numerically efficient procedure. Moreover, we theoretically justify this method and derive finite sample bounds on the corresponding coverage probability. Contrary to [24, 27], the obtained results are valid for non-Gaussian data: the main assumption that we impose is the concentration of the sample covariance ˆΣ in a vicinity of Σ∗. Numerical simulations illustrate good performance of the proposed procedure even on non-Gaussian data in a rather challenging regime.