Search Results

Now showing 1 - 6 of 6
  • Item
    Advanced GeSn/SiGeSn Group IV Heterostructure Lasers
    (Weinheim : Wiley-VCH, 2018) von den Driesch, Nils; Stange, Daniela; Rainko, Denis; Povstugar, Ivan; Zaumseil, Peter; Capellini, Giovanni; Schröder, Thomas; Denneulin, Thibaud; Ikonic, Zoran; Hartmann, Jean-Michel; Sigg, Hans; Mantl, Siegfried; Grützmacher, Detlev; Buca, Dan
    Growth and characterization of advanced group IV semiconductor materials with CMOS-compatible applications are demonstrated, both in photonics. The investigated GeSn/SiGeSn heterostructures combine direct bandgap GeSn active layers with indirect gap ternary SiGeSn claddings, a design proven its worth already decades ago in the III–V material system. Different types of double heterostructures and multi-quantum wells (MQWs) are epitaxially grown with varying well thicknesses and barriers. The retaining high material quality of those complex structures is probed by advanced characterization methods, such as atom probe tomography and dark-field electron holography to extract composition parameters and strain, used further for band structure calculations. Special emphasis is put on the impact of carrier confinement and quantization effects, evaluated by photoluminescence and validated by theoretical calculations. As shown, particularly MQW heterostructures promise the highest potential for efficient next generation complementary metal-oxide-semiconductor (CMOS)-compatible group IV lasers.
  • Item
    Gate-controlled quantum dots and superconductivity in planar germanium
    ([London] : Nature Publishing Group UK, 2018) Hendrickx, N.W.; Franke, D.P.; Sammak, A.; Kouwenhoven, M.; Sabbagh, D.; Yeoh, L.; Li, R.; Tagliaferri, M.L.V.; Virgilio, M.; Capellini, G.; Scappucci, G.; Veldhorst, M.
    Superconductors and semiconductors are crucial platforms in the field of quantum computing. They can be combined to hybrids, bringing together physical properties that enable the discovery of new emergent phenomena and provide novel strategies for quantum control. The involved semiconductor materials, however, suffer from disorder, hyperfine interactions or lack of planar technology. Here we realise an approach that overcomes these issues altogether and integrate gate-defined quantum dots and superconductivity into germanium heterostructures. In our system, heavy holes with mobilities exceeding 500,000 cm2 (Vs)−1 are confined in shallow quantum wells that are directly contacted by annealed aluminium leads. We observe proximity-induced superconductivity in the quantum well and demonstrate electric gate-control of the supercurrent. Germanium therefore has great promise for fast and coherent quantum hardware and, being compatible with standard manufacturing, could become a leading material for quantum information processing.
  • Item
    Modular coherent photonic-aided payload receiver for communications satellites
    ([London] : Nature Publishing Group UK, 2019) Duarte, Vanessa C.; Prata, João G.; Ribeiro, Carlos F.; Nogueira, Rogério N.; Winzer, Georg; Zimmermann, Lars; Walker, Rob; Clements, Stephen; Filipowicz, Marta; Napierała, Marek; Nasiłowski, Tomasz; Crabb, Jonathan; Kechagias, Marios; Stampoulidis, Leontios; Anzalchi, Javad; Drummond, Miguel V.
    Ubiquitous satellite communications are in a leading position for bridging the digital divide. Fulfilling such a mission will require satellite services on par with fibre services, both in bandwidth and cost. Achieving such a performance requires a new generation of communications payloads powered by large-scale processors, enabling a dynamic allocation of hundreds of beams with a total capacity beyond 1 Tbit s−1. The fact that the scale of the processor is proportional to the wavelength of its signals has made photonics a key technology for its implementation. However, one last challenge hinders the introduction of photonics: while large-scale processors demand a modular implementation, coherency among signals must be preserved using simple methods. Here, we demonstrate a coherent photonic-aided receiver meeting such demands. This work shows that a modular and coherent photonic-aided payload is feasible, making way to an extensive introduction of photonics in next generation communications satellites.
  • Item
    Structural and electronic properties of epitaxial multilayer h-BN on Ni(111) for spintronics applications
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Tonkikh, A.A.; Voloshina, E.N.; Werner, P.; Blumtritt, H.; Senkovskiy, B.; Güntherodt, G.; Parkin, S.S.P.; Dedkov, Yu. S.
    Hexagonal boron nitride (h-BN) is a promising material for implementation in spintronics due to a large band gap, low spin-orbit coupling, and a small lattice mismatch to graphene and to close-packed surfaces of fcc-Ni(111) and hcp-Co(0001). Epitaxial deposition of h-BN on ferromagnetic metals is aimed at small interface scattering of charge and spin carriers. We report on the controlled growth of h-BN/Ni(111) by means of molecular beam epitaxy (MBE). Structural and electronic properties of this system are investigated using cross-section transmission electron microscopy (TEM) and electron spectroscopies which confirm good agreement with the properties of bulk h-BN. The latter are also corroborated by density functional theory (DFT) calculations, revealing that the first h-BN layer at the interface to Ni is metallic. Our investigations demonstrate that MBE is a promising, versatile alternative to both the exfoliation approach and chemical vapour deposition of h-BN.
  • Item
    Advanced numerical investigation of the heat flux in an array of microbolometers
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Stocchi, Matteo; Mencarelli, Davide; Pierantoni, Luca; Göritz, Alexander; Kaynak, Canan Baristiran; Wietstruck, Matthias; Kaynak, Mehmet
    The investigation of the thermal properties of an array of microbolometers has been carried out by mean of two independent numerical analysis, respectively the Direct-Simulation Monte Carlo (DSMC) and the classic diffusive approach of the Fourier's equation. In particular, the thermal dissipation of a hot membrane placed in a low-pressure cavity has been studied for different values of the temperature of the hot body and for different values of the pressure of the environment. The results for the heat flux derived from the two approaches have then been compared and discussed.
  • Item
    Restoring a nearly free-standing character of graphene on Ru(0001) by oxygen intercalation
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Voloshina, Elena; Berdunov, Nikolai; Dedkov, Yuriy
    Realization of a free-standing graphene is always a demanding task. Here we use scanning probe microscopy and spectroscopy to study the crystallographic structure and electronic properties of the uniform nearly free-standing graphene layers obtained by intercalation of oxygen monolayer in the “strongly” bonded graphene/Ru(0001) interface. Spectroscopic data show that such graphene layer is heavily p-doped with the Dirac point located at 552 meV above the Fermi level. Experimental data are understood within density-functional theory approach and the observed effects are in good agreement with the theoretical data.