Search Results

Now showing 1 - 10 of 29
  • Item
    Assessment of Stability in Partitional Clustering Using Resampling Techniques
    (Karlsruhe : KIT Scientific Publishing, 2016) Mucha, Hans-Joachim
    The assessment of stability in cluster analysis is strongly related to the main difficult problem of determining the number of clusters present in the data. The latter is subject of many investigations and papers considering different resampling techniques as practical tools. In this paper, we consider non-parametric resampling from the empirical distribution of a given dataset in order to investigate the stability of results of partitional clustering. In detail, we investigate here only the very popular K-means method. The estimation of the sampling distribution of the adjusted Rand index (ARI) and the averaged Jaccard index seems to be the most general way to do this. In addition, we compare bootstrapping with different subsampling schemes (i.e., with different cardinality of the drawn samples) with respect to their performance in finding the true number of clusters for both synthetic and real data.
  • Item
    A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions
    (Berlin ; Boston, Mass. : de Gruyter, 2015) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    A boundary control problem for the pure Cahn–Hilliard equations with possibly singular potentialsand dynamic boundary conditions is studied and rst-order necessary conditions for optimality are proved.
  • Item
    Distributed optimal control of a nonstandard nonlocal phase field system
    (Springfield, MO : AIMS Press, 2016) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    We investigate a distributed optimal control problem for a nonlocal phase field model of viscous Cahn-Hilliard type. The model constitutes a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion that has been studied in a series of papers by P. Podio-Guidugli and the present authors. The model consists of a highly nonlinear parabolic equation coupled to an ordinary differential equation. The latter equation contains both nonlocal and singular terms that render the analysis difficult. Standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.
  • Item
    Weak-strong uniqueness for the general Ericksen-Leslie system in three dimensions
    (Springfield, Mo. : American Institute of Mathematical Sciences, 2018) Emmrich, Etienne; Lasarzik, Robert
    We study the Ericksen-Leslie system equipped with a quadratic free energy functional. The norm restriction of the director is incorporated by a standard relaxation technique using a double-well potential. We use the relative energy concept, often applied in the context of compressible Euler- or related systems of fluid dynamics, to prove weak-strong uniqueness of solutions. A main novelty, not only in the context of the Ericksen-Leslie model, is that the relative energy inequality is proved for a system with a nonconvex energy.
  • Item
    Large Deviations of Continuous Regular Conditional Probabilities
    (New York, NY [u.a.] : Springer Science + Business Media B.V., 2016) van Zuijlen, W.
    We study product regular conditional probabilities under measures of two coordinates with respect to the second coordinate that are weakly continuous on the support of the marginal of the second coordinate. Assuming that there exists a sequence of probability measures on the product space that satisfies a large deviation principle, we present necessary and sufficient conditions for the conditional probabilities under these measures to satisfy a large deviation principle. The arguments of these conditional probabilities are assumed to converge. A way to view regular conditional probabilities as a special case of product regular conditional probabilities is presented. This is used to derive conditions for large deviations of regular conditional probabilities. In addition, we derive a Sanov-type theorem for large deviations of the empirical distribution of the first coordinate conditioned on fixing the empirical distribution of the second coordinate.
  • Item
    A rough path perspective on renormalization
    (Amsterdam [u.a.] : Elsevier, 2019) Bruned, Y.; Chevyrev, I.; Friz, P.K.; Preiß, R.
    We develop the algebraic theory of rough path translation. Particular attention is given to the case of branched rough paths, whose underlying algebraic structure (Connes-Kreimer, Grossman-Larson) makes it a useful model case of a regularity structure in the sense of Hairer. Pre-Lie structures are seen to play a fundamental rule which allow a direct understanding of the translated (i.e. renormalized) equation under consideration. This construction is also novel with regard to the algebraic renormalization theory for regularity structures due to Bruned–Hairer–Zambotti (2016), the links with which are discussed in detail. © 2019 The Author(s)
  • Item
    Scaling limit of ballistic self-avoiding walk interacting with spatial random permutations
    ([Madralin] : EMIS ELibEMS, 2019) Betz, Volker; Taggi, Lorenzo
    We consider nearest neighbour spatial random permutations on Zd. In this case, the energy of the system is proportional to the sum of all cycle lengths, and the system can be interpreted as an ensemble of edge-weighted, mutually self-avoiding loops. The constant of proportionality, α, is the order parameter of the model. Our first result is that in a parameter regime of edge weights where it is known that a single self-avoiding loop is weakly space filling, long cycles of spatial random permutations are still exponentially unlikely. For our second result, we embed a self-avoiding walk into a background of spatial random permutations, and condition it to cover a macroscopic distance. For large values of α (where long cycles are very unlikely) we show that this walk collapses to a straight line in the scaling limit, and give bounds on the fluctuations that are almost sufficient for diffusive scaling. For proving our results, we develop the concepts of spatial strong Markov property and iterative sampling for spatial random permutations, which may be of independent interest. Among other things, we use them to show exponential decay of correlations for large values of α in great generality.
  • Item
    From Large Deviations to Semidistances of Transport and Mixing: Coherence Analysis for Finite Lagrangian Data
    (New York, NY : Springer, 2018) Koltai, Péter; Renger, D.R. Michiel
    One way to analyze complicated non-autonomous flows is through trying to understand their transport behavior. In a quantitative, set-oriented approach to transport and mixing, finite time coherent sets play an important role. These are time-parametrized families of sets with unlikely transport to and from their surroundings under small or vanishing random perturbations of the dynamics. Here we propose, as a measure of transport and mixing for purely advective (i.e., deterministic) flows, (semi)distances that arise under vanishing perturbations in the sense of large deviations. Analogously, for given finite Lagrangian trajectory data we derive a discrete-time-and-space semidistance that comes from the “best” approximation of the randomly perturbed process conditioned on this limited information of the deterministic flow. It can be computed as shortest path in a graph with time-dependent weights. Furthermore, we argue that coherent sets are regions of maximal farness in terms of transport and mixing, and hence they occur as extremal regions on a spanning structure of the state space under this semidistance—in fact, under any distance measure arising from the physical notion of transport. Based on this notion, we develop a tool to analyze the state space (or the finite trajectory data at hand) and identify coherent regions. We validate our approach on idealized prototypical examples and well-studied standard cases.
  • Item
    The invariant distribution of wealth and employment status in a small open economy with precautionary savings
    (Amsterdam : North-Holland, 2019) Bayer, Christian; Rendall, Alan D.; Wälde, Klaus
    We study optimal savings in continuous time with exogenous transitions between employment and unemployment as the only source of uncertainty in a small open economy. We prove the existence of an optimal consumption path. We exploit that the dynamics of consumption and wealth between jumps can be expressed as a Fuchsian system. We derive conditions under which an invariant joint distribution for the state variables, i.e., wealth and labour market status, exists and is unique. We also provide conditions under which the distribution of these variables converges to the invariant distribution. Our analysis relies on the notion of T-processes and applies results on the stability of Markovian processes from Meyn and Tweedie (1993a, b,c). © 2019 The Author(s)
  • Item
    Optimal control of multiphase steel production
    (Berlin ; Heidelberg : Springer, 2019) Hömberg, Dietmar; Krumbiegel, Klaus; Togobytska, Nataliya
    An optimal control problem for the production of multiphase steel is investigated that takes into account phase transformations in the steel slab. The state equations are a semilinear heat equation coupled with an ordinary differential equation, that describes the evolution of the steel microstructure. The time-dependent heat transfer coefficient serves as a control function. Necessary and sufficient optimality conditions for the control problem are derived. For the numerical solution of the control problem, a reduced sequential quadratic programming method with a primal-dual active set strategy is developed. The numerical results are presented for the optimal control of a cooling line in the production of hot-rolled Mo–Mn dual phase steel. © 2019, The Author(s).