Search Results

Now showing 1 - 4 of 4
  • Item
    A new type of identification problems: Optimizing the fractional order in a nonlocal evolution equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Sprekels, Jürgen; Valdinoci, Enrico
    In this paper, we consider a rather general linear evolution equation of fractional type, namely a diffusion type problem in which the diffusion operator is the sth power of a positive definite operator having a discrete spectrum in R+. We prove existence, uniqueness and differentiability properties with respect to the fractional parameter s. These results are then employed to derive existence as well as first-order necessary and second-order sufficient optimality conditions for a minimization problem, which is inspired by considerations in mathematical biology. In this problem, the fractional parameter s serves as the control parameter that needs to be chosen in such a way as to minimize a given cost functional. This problem constitutes a new class of identification problems: while usually in identification problems the type of the differential operator is prescribed and one or several of its coefficient functions need to be identified, in the present case one has to determine the type of the differential operator itself. This problem exhibits the inherent analytical difficulty that with changing fractional parameter s also the domain of definition, and thus the underlying function space, of the fractional operator changes.
  • Item
    Analysis of electronic models for solar cells including energy resolved defect densities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Glitzky, Annegret
    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level.
  • Item
    An electronic model for solar cells including active interfaces and energy resolved defect densities
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Glitzky, Annegret
    We introduce an electronic model for solar cells taking into account heterostructures with active interfaces and energy resolved volume and interface trap densities. The model consists of continuity equations for electrons and holes with thermionic emission transfer conditions at the interface and of ODEs for the trap densities with energy level and spatial position as parameters, where the right hand sides contain generation-recombination as well as ionization reactions. This system is coupled with a Poisson equation for the electrostatic potential. We show the thermodynamic correctness of the model and prove a priori estimates for the solutions to the evolution system. Moreover, existence and uniqueness of weak solutions of the problem are proven. For this purpose we solve a regularized problem and verify bounds of the corresponding solution not depending on the regularization level.
  • Item
    Properties of the solutions of delocalised coagulation and inception problems with outflow boundaries
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Patterson, Robert I.A.
    Well posedness is established for a family of equations modelling particle populations undergoing delocalised coagulation, advection, inflow and outflow in a externally specified velocity field. Very general particle types are allowed while the spatial domain is a bounded region of d-dimensional space for which every point lies on exactly one streamline associated with the velocity field. The problem is formulated as a semi-linear ODE in the Banach space of bounded measures on particle position and type space. A local Lipschitz property is established in total variation norm for the propagators (generalised semi-groups) associated with the problem and used to construct a Picard iteration that establishes local existence and global uniqueness for any initial condition. The unique weak solution is shown further to be a differentiable or at least bounded variation strong solution under smoothness assumptions on the parameters of the coagulation interaction. In the case of one spatial dimension strong differentiability is established even for coagulation parameters with a particular bounded variation structure in space. This one dimensional extension establishes the convergence of the simulation processes studied in [Patterson, textitStoch. Anal. Appl. 31, 2013] to a unique and differentiable limit.