Search Results

Now showing 1 - 4 of 4
  • Item
    Actively Tunable Collective Localized Surface Plasmons by Responsive Hydrogel Membrane
    (Weinheim : Wiley-VCH, 2019) Quilis, Nestor Gisbert; van Dongen, Marcel; Venugopalan, Priyamvada; Kotlarek, Daria; Petri, Christian; Cencerrado, Alberto Moreno; Stanescu, Sorin; Herrera, Jose Luis Toca; Jonas, Ulrich; Möller, Martin; Mourran, Ahmed; Dostalek, Jakub
    Collective (lattice) localized surface plasmons (cLSP) with actively tunable and extremely narrow spectral characteristics are reported. They are supported by periodic arrays of gold nanoparticles attached to a stimuli-responsive hydrogel membrane, which can on demand swell and collapse to reversibly modulate arrays period and surrounding refractive index. In addition, it features a refractive index-symmetrical geometry that promotes the generation of cLSPs and leads to strong suppression of radiative losses, narrowing the spectral width of the resonance, and increasing of the electromagnetic field intensity. Narrowing of the cLSP spectral band down to 13 nm and its reversible shifting by up to 151 nm is observed in the near infrared part of the spectrum by varying temperature and by solvent exchange for systems with a poly(N-isopropylacrylamide)-based hydrogel membrane that is allowed to reversibly swell and collapse in either one or in three dimensions. The reported structures with embedded periodic gold nanoparticle arrays are particularly attractive for biosensing applications as the open hydrogel structure can be efficiently post-modified with functional moieties, such as specific ligands, and since biomolecules can rapidly diffuse through swollen polymer networks. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Hybrid Optical Fibers – An Innovative Platform for In‐Fiber Photonic Devices
    (Weinheim : Wiley-VCH, 2015) Alexander Schmidt, Markus; Argyros, Alexander; Sorin, Fabien
    The field of hybrid optical fibers is one of the most active research areas in current fiber optics and has the vision of integrating sophisticated materials inside fibers, which are not traditionally used in fiber optics. Novel in-fiber devices with unique properties have been developed, opening up new directions for fiber optics in fields of critical interest in modern research, such as biophotonics, environmental science, optoelectronics, metamaterials, remote sensing, medicine, or quantum optics. Here the recent progress in the field of hybrid optical fibers is reviewed from an application perspective, focusing on fiber-integrated devices enabled by including novel materials inside polymer and glass fibers. The topics discussed range from nanowire-based plasmonics and hyperlenses, to integrated semiconductor devices such as optoelectronic detectors, and intense light generation unlocked by highly nonlinear hybrid waveguides.
  • Item
    Stress-Induced 3D Chiral Fractal Metasurface for Enhanced and Stabilized Broadband Near-Field Optical Chirality
    (Weinheim : Wiley-VCH Verlag, 2019) Tseng M.L.; Lin Z.-H.; Kuo H.Y.; Huang T.-T.; Huang Y.-T.; Chung T.L.; Chu C.H.; Huang J.-S.; Tsai D.P.
    Metasurfaces comprising 3D chiral structures have shown great potential in chiroptical applications such as chiral optical components and sensing. So far, the main challenges lie in the nanofabrication and the limited operational bandwidth. Homogeneous and localized broadband near-field optical chirality enhancement has not been achieved. Here, an effective nanofabrication method to create a 3D chiral metasurface with far- and near-field broadband chiroptical properties is demonstrated. A focused ion beam is used to cut and stretch nanowires into 3D Archimedean spirals from stacked films. The 3D Archimedean spiral is a self-similar chiral fractal structure sensitive to the chirality of light. The spiral exhibits far- and near-field broadband chiroptical responses from 2 to 8 µm. With circularly polarized light (CPL), the spiral shows superior far-field transmission dissymmetry and handedness-dependent near-field localization. With linearly polarized excitation, homogeneous and highly enhanced broadband near-field optical chirality is generated at a stably localized position inside the spiral. The effective yet straightforward fabrication strategy allows easy fabrication of 3D chiral structures with superior broadband far-field chiroptical response as well as strongly enhanced and stably localized broadband near-field optical chirality. The reported method and chiral metasurface may find applications in broadband chiral optics and chiral sensing. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Colloidal Self-Assembly Concepts for Plasmonic Metasurfaces
    (Weinheim : Wiley-VCH, 2019) Mayer, Martin; Schnepf, Max J.; König, Tobias A.F.; Fery, Andreas
    Metallic nanostructures exhibit strong interactions with electromagnetic radiation, known as the localized surface plasmon resonance. In recent years, there is significant interest and growth in the area of coupled metallic nanostructures. In such assemblies, short- and long-range coupling effects can be tailored and emergent properties, e.g., metamaterial effects, can be realized. The term “plasmonic metasurfaces” is used for this novel class of assemblies deposited on planar surfaces. Herein, the focus is on plasmonic metasurfaces formed from colloidal particles. These are formed by self-assembly and can meet the demands of low-cost manufacturing of large-area, flexible, and ultrathin devices. The advances in high optical quality of the colloidal building blocks and methods for controlling their self-assembly on surfaces will lead to novel functional devices for dynamic light modulators, pulse sharpening, subwavelength imaging, sensing, and quantum devices. This progress report focuses on predicting optical properties of single colloidal building blocks and their assemblies, wet-chemical synthesis, and directed self-assembly of colloidal particles. The report concludes with a discussion of the perspectives toward expanding the colloidal plasmonic metasurfaces concept by integrating them with quantum emitters (gain materials) or mechanically responsive structures. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim