Search Results

Now showing 1 - 2 of 2
  • Item
    A continuum model for yttria-stabilized zirconia incorporating triple phase boundary, lattice structure and immobile oxide ions
    (Berlin ; Heidelberg ; New York : Springer, 2019) Vágner, Petr; Guhlke, Clemens; Miloš, Vojtěch; Müller, Rüdiger; Fuhrmann, Jürgen
    A continuum model for yttria-stabilized zirconia (YSZ) in the framework of non-equilibrium thermodynamics is developed. Particular attention is given to (i) modeling of the YSZ-metal-gas triple phase boundary, (ii) incorporation of the lattice structure and immobile oxide ions within the free energy model and (iii) surface reactions. A finite volume discretization method based on modified Scharfetter-Gummel fluxes is derived in order to perform numerical simulations. The model is used to study the impact of yttria and immobile oxide ions on the structure of the charged boundary layer and the double layer capacitance. Cyclic voltammograms of an air-half cell are simulated to study the effect of parameter variations on surface reactions, adsorption and anion diffusion. © 2019, The Author(s).
  • Item
    Boundary conditions for electrochemical interfaces
    (Bristol : IOP Publishing, 2017) Landstorfer, Manuel
    Consistent boundary conditions for electrochemical interfaces, which cover double layer charging, pseudo-capacitive effects and transfer reactions, are of high demand in electrochemistry and adjacent disciplines. Mathematical modeling and optimization of electrochemical systems is a strongly emerging approach to reduce cost and increase efficiency of super-capacitors, batteries, fuel cells, and electro-catalysis. However, many mathematical models which are used to describe such systems lack a real predictive value. Origin of this shortcoming is the usage of oversimplified boundary conditions. In this work we derive the boundary conditions for some general electrode-electrolyte interface based on non-equilibrium thermodynamics for volumes and surfaces. The resulting equations are widely applicable and cover also tangential transport. The general framework is then applied to a specific material model which allows the deduction of a current-voltage relation and thus a comparison to experimental data. Some simplified 1D examples show the range of applicability of the new approach.