Search Results

Now showing 1 - 3 of 3
  • Item
    In situ Raman spectroscopy on silicon nanowire anodes integrated in lithium ion batteries
    (Pennington, NJ : Electrochemical Society Inc., 2019) Krause, A.; Tkacheva, O.; Omar, A.; Langklotz, U.; Giebeler, L.; Dörfler, S.; Fauth, F.; Mikolajick, T.; Weber, W.M.
    Rapid decay of silicon anodes during lithiation poses a significant challenge in application of silicon as an anode material in lithium ion batteries. In situ Raman spectroscopy is a powerful method to study the relationship between structural and electrochemical data during electrode cycling and to allow the observation of amorphous as well as liquid and transient species in a battery cell. Herein, we present in situ Raman spectroscopy on high capacity electrode using uncoated and carbon-coated silicon nanowires during first lithiation and delithiation cycle in an optimized lithium ion battery setup and complement the results with operando X-ray reflection diffraction measurements. During lithiation, we were able to detect a new Raman signal at 1859 cm−1 especially on uncoated silicon nanowires. The detailed in situ Raman measurement of the first lithiation/delithiation cycle allowed to differentiate between morphology changes of the electrode as well as interphase formation from electrolyte components.
  • Item
    Correction: Electrochemically deposited nanocrystalline InSb thin films and their electrical properties (Journal of Materials Chemistry C (2016) 4 (1345-1350) DOI: 10.1039/C5TC03656A)
    (London : RSC Publ., 2019) Hnida, K.E.; Bäßler, S.; Mech, J.; Szaciłowski, K.; Socha, R.P.; Gajewska, M.; Nielsch, K.; Przybylski, M.; Sulka, G.D.
    There was an error in eqn (3) which was reproduced from the literature and used for the interpretation of the results. The calculations (using the equations from an original work from 1987) were done according the correct version of eqn (3) presented below:. (Table Presented). © 2019 The Royal Society of Chemistry.
  • Item
    Electrodeposition of Fe70Pd30 nanowires from a complexed ammonium-sulfosalicylic electrolyte with high stability
    (Amsterdam : Elsevier, 2010) Haehnel, V.; Fähler, S.; Schultz, L.; Schlörb, H.
    A highly stable plating bath for the electrodeposition of Fe-Pd nanowires into nanoporous alumina templates has been developed. Complexing of both metal ions and exchanging Fe2+ by Fe3+ avoid chemical reduction of Pd ions and, therefore, undesirable deposition. By using a pulse potential mode and appropriate adjustment of deposition potentials homogeneously filled templates without surface deposits and nanowires close to the desired composition of Fe70Pd30 have been achieved. These alloy nanowires represent a key step towards nanoactuators based on magnetic shape memory alloys. © 2010 Elsevier B.V. All rights reserved.