Search Results

Now showing 1 - 10 of 38
  • Item
    Occurrence frequencies of polar mesosphere summer echoes observed at 69 N during a full solar cycle
    (Göttingen : Copernicus, 2013) Latteck, R.; Bremer, J.
    Polar mesosphere summer echoes (PMSE) are strong enhancements of received signal power at very high radar frequencies occurring at altitudes between about 80 and 95 km at polar latitudes during summer. PMSE are caused by inhomogeneities in the electron density of the radar Bragg scale within the plasma of the cold summer mesopause region in the presence of negatively charged ice particles. Thus the occurrence of PMSE contains information about mesospheric temperature and water vapour content but also depends on the ionisation due to solar wave radiation and precipitating high energetic particles. Continuous and homogeneous observations of PMSE have been done on the North-Norwegian island Andøya (69.3 N, 16.0 E) from 1999 until 2008 using the ALWIN VHF radar at 53.5 MHz. In 2009 the Leibniz-Institute of Atmospheric Physics in Kühlungsborn, Germany (IAP) started the installation of the Middle Atmosphere Alomar Radar System (MAARSY) at the same location. The observation of mesospheric echoes could be continued in spring 2010 starting with an initial stage of expansion of MAARSY and is carried out with the completed installation of the radar since May 2011. Since both the ALWIN radar and MAARSY are calibrated, the received echo strength of PMSE from 14 yr of mesospheric observations could be converted to absolute signal power. Occurrence frequencies based on different common thresholds of PMSE echo strength were used for investigations of the solar and geomagnetic control of the PMSE as well as of possible long-term changes. The PMSE are positively correlated with the solar Lyman α radiation and the geomagnetic activity. The occurrence frequencies of the PMSE show slightly positive trends but with marginal significance levels.
  • Item
    A modified index for the description of the ionospheric short- and long-term activity
    (Göttingen : Copernicus, 2010) Mielich, J.; Bremer, J.
    A modified ionospheric activity index AI has been developed on the basis of ionospheric foF2 observations. Such index can be helpful for an interested user to get information about the current state of the ionosphere. Using ionosonde data of the station Juliusruh (54.6° N; 13.4°E) this index has been tested for the time interval from January 1996 until December 2008. This index has no diurnal and seasonal variations, only a small positive dependence on the solar activity could be found. The variability of this index has, however, a marked seasonal variability with maxima during the equinoxes, a clear minimum in summer, and enhanced values in winter. The observed variability of AI is strongly correlated with the geomagnetic activity, most markedly during the equinoxes, whereas the influence of the solar activity is markedly smaller and mostly insignificant. Strong geomagnetic disturbances cause in middle latitudes in general negative disturbances in AI, mostly pronounced during equinoxes and summer and only partly during winter, thus in agreement with the current physical knowledge about ionospheric storms. © 2010 Author(s).
  • Item
    The Geminid meteor shower during the ECOMA sounding rocket campaign: Specular and head echo radar observations
    (Göttingen : Copernicus, 2013) Stober, G.; Schult, C.; Baumann, C.; Latteck, R.; Rapp, M.
    The ECOMA (Existence of Charge state Of meteoric smoke particles in the Middle Atmosphere) sounding rocket campaign was conducted during the Geminid meteor shower in December 2010 in order to explore whether there is a change of the properties of meteoric smoke particles due to the stream. In parallel to the rocket flights, three radars monitored the Geminid activity located at the launch site in Northern Norway and in Northern Germany to gain information about the meteor flux into the atmosphere. The results presented here are based on specular meteor radar observations measuring the radiant position, the velocity and the meteor flux into the atmosphere during the Geminids. Further, the MAARSY (Middle Atmosphere Alomar Radar System) radar was operated to conduct meteor head echo experiments. The interferometric capabilities of MAARSY permit measuring the meteor trajectories within the radar beam and to determine the source radiant and geocentric meteor velocity, as well as to compute the meteor orbit.
  • Item
    Validation of the radiation pattern of the Middle Atmosphere Alomar Radar System (MAARSY)
    (Göttingen : Copernicus, 2012) Renkwitz, T.; Singer, W.; Latteck, R.; Stober, G.; Rapp, M.
    In 2009/2010 the Leibniz-Institute of Atmospheric Physics (IAP) installed a new powerful VHF radar on the island Andøya in Northern Norway (69.30 N, 16.04 E). The Middle Atmosphere Alomar Radar System (MAARSY) allows studies with high spatial and temporal resolution in the troposphere/lower stratosphere and in the mesosphere/lower thermosphere of the Arctic atmosphere. The monostatic radar is operated at 53.5 MHz with an active phased array antenna consisting of 433 Yagi antennas. Each individual antenna is connected to its own transceiver with independent phase control and a scalable power output of up to 2 kW, which implies high flexibility of beam forming and beam steering. During the design phase of MAARSY several model studies have been carried out in order to estimate the radiation pattern for various combinations of beam forming and steering. However, parameters like mutual coupling, active impedance and ground parameters have an impact on the radiation pattern, but can hardly be measured. Hence, experiments need to be designed to verify the model results. For this purpose, the radar has occasionally been used in passive mode, monitoring the noise power received from both distinct cosmic noise sources like e.g. Cassiopeia A and Cygnus A, and the diffuse cosmic background noise. The analysis of the collected dataset enables us to verify beam forming and steering attempts. These results document the current status of the radar during its development and provide valuable information for further improvement.
  • Item
    MAARSY-the new MST radar on Andøya: First results of spaced antenna and Doppler measurements of atmospheric winds in the troposphere and mesosphere using a partial array
    (Göttingen : Copernicus, 2012) Stober, G.; Latteck, R.; Rapp, M.; Singer, W.; Zecha, M.
    MST radars have been used to study the troposphere, stratosphere and mesosphere over decades. These radars have proven to be a valuable tool to investigate atmospheric dynamics. MAARSY, the new MST radar at the island of Andøya uses a phased array antenna and is able to perform spaced antenna and Doppler measurements at the same time with high temporal and spatial resolution. Here we present first wind observations using the initial expansion stage during summer 2010. The tropospheric spaced antenna and Doppler beam swinging experiments are compared to radiosonde measurements, which were launched at the nearby Andøya Rocket Range (ARR). The mesospheric wind observations are evaluated versus common volume meteor radar wind measurements. The beam steering capabilities of MAARSY are demonstrated by performing systematic scans of polar mesospheric summer echoes (PMSE) using 25 and 91 beam directions. These wind observations permit to evaluate the new radar against independent measurements from radiosondes and meteor radar measurements to demonstrate its capabilities to provide reliable wind data from the troposphere up to the mesosphere.
  • Item
    Testing the detectability of spatio-temporal climate transitions from paleoclimate networks with the start model
    (Göttingen : Copernicus, 2014) Rehfeld, K.; Molkenthin, N.; Kurths, J.
    A critical challenge in paleoclimate data analysis is the fact that the proxy data are heterogeneously distributed in space, which affects statistical methods that rely on spatial embedding of data. In the paleoclimate network approach nodes represent paleoclimate proxy time series, and links in the network are given by statistically significant similarities between them. Their location in space, proxy and archive type is coded in the node attributes. We develop a semi-empirical model for Spatio- Temporally AutocoRrelated Time series, inspired by the interplay of different Asian Summer Monsoon (ASM) systems. We use an ensemble of transition runs of this START model to test whether and how spatio-temporal climate transitions could be detectable from (paleo)climate networks. We sample model time series both on a grid and at locations at which paleoclimate data are available to investigate the effect of the spatially heterogeneous availability of data. Node betweenness centrality, averaged over the transition region, does not respond to the transition displayed by the START model, neither in the grid-based nor in the scattered sampling arrangement. The regionally defined measures of regional node degree and cross link ratio, however, are indicative of the changes in both scenarios, although the magnitude of the changes differs according to the sampling. We find that the START model is particularly suitable for pseudo-proxy experiments to test the technical reconstruction limits of paleoclimate data based on their location, and we conclude that (paleo)climate networks are suitable for investigating spatio-temporal transitions in the dependence structure of underlying climatic fields.
  • Item
    LITOS - A new balloon-borne instrument for fine-scale turbulence soundings in the stratosphere
    (Göttingen : Copernicus, 2011) Theuerkauf, A.; Gerding, M.; Lübken, F.-J.
    We have developed a new compact balloon payload called LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) for high resolution wind turbulence soundings in the stratosphere up to 35 km altitude. The wind measurements are performed using a constant temperature anemometer (CTA) with a vertical resolution of ∼2.5 mm, i.e. 2 kHz sampling rate at 5 m/s ascent speed. Thereby, for the first time, it is possible to study the entire turbulence spectrum down to the viscous subrange in the stratosphere. Including telemetry, housekeeping, batteries and recovery unit, the payload weighs less than 5 kg and can be launched from any radiosonde station. Since autumn 2007, LITOS has been successfully launched several times from the Leibniz-Institute of Atmospheric Physics (IAP) in Kühlungsborn, Germany (54° N, 12° E). Two additional soundings were carried out in 2008 and 2009 in Kiruna, Sweden (67° N, 21° E) as part of the BEXUS program (Balloon-borne EXperiments for University Students). We describe here the basic principle of CTA measurements and prove the validity of this method in the stratosphere. A first case study allows a clear distinction between non-turbulent regions and a turbulent layer with a thickness of some tens of meters. Since our measurements cover the transition between the inertial and viscous subrange, energy dissipation rates can be calculated with high reliability.
  • Item
    Zonal asymmetries in middle atmospheric ozone and water vapour derived from Odin satellite data 2001-2010
    (Göttingen : Copernicus, 2011) Gabriel, A.; Körnich, H.; Lossow, S.; Peters, D.H.W.; Urban, J.; Murtagh, D.
    Stationary wave patterns in middle atmospheric ozone (O3) and water vapour (H2O) are an important factor in the atmospheric circulation, but there is a strong gap in diagnosing and understanding their configuration and origin. Based on Odin satellite data from 2001 to 2010 we investigate the stationary wave patterns in O3 and H2O as indicated by the seasonal long-term means of the zonally asymmetric components O3* Combining double low line O3-[O3] and H2O* Combining double low line H2O-[H2O] ([O3], [H2O]: zonal means). At mid-and polar latitudes we find a pronounced wave one pattern in both constituents. In the Northern Hemisphere, the wave patterns increase during autumn, maintain their strength during winter and decay during spring, with maximum amplitudes of about 10-20 % of the zonal mean values. During winter, the wave one in O3* shows a maximum over the North Pacific/Aleutians and a minimum over the North Atlantic/Northern Europe and a double-peak structure with enhanced amplitude in the lower and in the upper stratosphere. The wave one in H2O* extends from the lower stratosphere to the upper mesosphere with a westward shift in phase with increasing height including a jump in phase at upper stratosphere altitudes. In the Southern Hemisphere, similar wave patterns occur mainly during southern spring. By comparing the observed wave patterns in O 3* and H2O3* with a linear solution of a steady-state transport equation for a zonally asymmetric tracer component we find that these wave patterns are primarily due to zonally asymmetric transport by geostrophically balanced winds, which are derived from observed temperature profiles. In addition temperature-dependent photochemistry contributes substantially to the spatial structure of the wave pattern in O 3* . Further influences, e.g., zonal asymmetries in eddy mixing processes, are discussed.
  • Item
    Meteor radar observations of mesopause region long-period temperature oscillations
    (Göttingen : Copernicus, 2016) Jacobi, Ch.; Samtleben, N.; Stober, G.
    Meteor radar observations of mesosphere/lower thermosphere (MLT) daily temperatures have been performed at Collm, Germany since August 2004. The data have been analyzed with respect to long-period oscillations at time scales of 2–30 days. The results reveal that oscillations with periods of up to 6 days are more frequently observed during summer, while those with longer periods have larger amplitudes during winter. The oscillations may be considered as the signature of planetary waves. The results are compared with analyses from radar wind measurements. Moreover, the temperature oscillations show considerable year-to-year variability. In particular, amplitudes of the quasi 5-day oscillation have increased during the last decade, and the quasi 10-day oscillations are larger if the equatorial stratospheric winds are eastward.
  • Item
    Distortion of meteor count rates due to cosmic radio noise and atmospheric particularities
    (Göttingen : Copernicus, 2010) Stober, G.; Jacobi, C.; Keuer, D.
    The determination of the meteoroid flux is still a scientifically challenging task. This paper focusses on the impact of extraterrestrial noise sources as well as atmospheric phenomena on the observation of specular meteor echoes. The effect of cosmic radio noise on the meteor detection process is estimated by computing the relative difference between radio loud and radio quiet areas and comparing the monthly averaged meteor flux for fixed signal-to-noise ratios or fixed electron line density measurements. Related to the cosmic radio noise is the influence of D-layer absorption or interference with sporadic E-layers, which can lead to apparent day-to-day variation of the meteor flux of 15-20%. © 2010 Author(s).