Search Results

Now showing 1 - 10 of 50
  • Item
    Persistence of orographic mixed-phase clouds
    (Hoboken, NJ : Wiley, 2016) Lohmann, U.; Henneberger, J.; Henneberg, O.; Fugal, J.P.; Bühl, J.; Kanji, Z.A.
    Mixed-phase clouds (MPCs) consist of ice crystals and supercooled water droplets at temperatures between 0 and approximately −38°C. They are thermodynamically unstable because the saturation vapor pressure over ice is lower than that over supercooled liquid water. Nevertheless, long-lived MPCs are ubiquitous in the Arctic. Here we show that persistent MPCs are also frequently found in orographic terrain, especially in the Swiss Alps, when the updraft velocities are high enough to exceed saturation with respect to liquid water allowing simultaneous growth of supercooled liquid droplets and ice crystals. Their existence is characterized by holographic measurements of cloud particles obtained at the high-altitude research station Jungfraujoch during spring 2012 and winter 2013 and simulations with the regional climate model COSMO (Consortium of Small-Scale Modeling).
  • Item
    Towards a comprehensive climate impacts assessment of solar geoengineering
    (Hoboken, NJ : Wiley, 2016) Irvine, Peter J.; Kravitz, Ben; Lawrence, Mark G.; Gerten, Dieter; Caminade, Cyril; Gosling, Simon N.; Hendy, Erica J.; Kassie, Belay T.; Kissling, W. Daniel; Muri, Helene; Oschlies, Andreas; Smith, Steven J.
    Despite a growing literature on the climate response to solar geoengineering—proposals to cool the planet by increasing the planetary albedo—there has been little published on the impacts of solar geoengineering on natural and human systems such as agriculture, health, water resources, and ecosystems. An understanding of the impacts of different scenarios of solar geoengineering deployment will be crucial for informing decisions on whether and how to deploy it. Here we review the current state of knowledge about impacts of a solar‐geoengineered climate and identify the major research gaps. We suggest that a thorough assessment of the climate impacts of a range of scenarios of solar geoengineering deployment is needed and can be built upon existing frameworks. However, solar geoengineering poses a novel challenge for climate impacts research as the manner of deployment could be tailored to pursue different objectives making possible a wide range of climate outcomes. We present a number of ideas for approaches to extend the survey of climate impacts beyond standard scenarios of solar geoengineering deployment to address this challenge. Reducing the impacts of climate change is the fundamental motivator for emissions reductions and for considering whether and how to deploy solar geoengineering. This means that the active engagement of the climate impacts research community will be important for improving the overall understanding of the opportunities, challenges, and risks presented by solar geoengineering.
  • Item
    View angle dependence of MODIS liquid water path retrievals in warm oceanic clouds
    (Hoboken, NJ : Wiley, 2014) Horváth, Ákos; Seethala, Chellappan; Deneke, Hartwig
    We investigated the view angle dependence of domain mean Moderate Resolution Imaging Spectroradiometer (MODIS) liquid water path (LWP) and that of corresponding cloud optical thickness, effective radius, and liquid cloud fraction as proxy for plane-parallel retrieval biases. Independent Advanced Microwave Scanning Radiometer–EOS LWP was used to corroborate that the observed variations with sun-view geometry were not severely affected by seasonal/latitudinal changes in cloud properties. Microwave retrievals showed generally small (<10%) cross-swath variations. The view angle (cross-swath) dependence of MODIS optical thickness was weaker in backscatter than forward scatter directions and transitioned from mild ∩ shape to stronger ∪ shape as heterogeneity, sun angle, or latitude increased. The 2.2 µm effective radius variations always had a ∪ shape, which became pronounced and asymmetric toward forward scatter in the most heterogeneous clouds and/or at the lowest sun. Cloud fraction had the strongest and always ∪-shaped view angle dependence. As a result, in-cloud MODIS cloud liquid water path (CLWP) showed surprisingly good view angle (cross-swath) consistency, usually comparable to that of microwave retrievals, due to cancelation between optical thickness and effective radius biases. Larger (20–40%) nadir-relative increases were observed in the most extreme heterogeneity and sun angle bins, that is, typically in the polar regions, which, however, constituted only 3–8% of retrievals. The good consistency of MODIS in-cloud CLWP was lost for gridbox mean LWP, which was dominated by the strong cloud fraction increase with view angle. More worryingly, MODIS LWP exhibited significant and systematic absolute increases with heterogeneity and sun angle that is not present in microwave LWP.
  • Item
    Long‐Term Changes in the Northern Midwinter Middle Atmosphere in Relation to the Quasi‐Biennial Oscillation
    (Hoboken, NJ : Wiley, 2019) Gabriel, A.
    Long-term changes in the middle atmosphere due to anthropogenic greenhouse gas emissions are examined in relation to the effect of the equatorial Quasi-Biennial Oscillation (QBO) on the northern midwinter circulation. The examinations are based on the Coupled Model Intercomparison Project Phase 5 simulations for 1979–2100 with the Earth-System-Model MPI-ESM-MR that generates the QBO internally. In particular, the three-dimensional residual circulation is used as proxy for the Brewer-Dobson circulation, revealing an increasing downwelling in the center of the polar low over Northern Europe/Siberia (~5% per decade). The changes in northern midwinter temperature, zonal wind, and residual circulation are much stronger during westerly (QBO-W) than easterly (QBO-E) phase of QBO (e.g., for a moderate increase in greenhouse gases, we find maximum decreases in the zonal mean westerly jet at 60°N and 3 hPa of about −14.8 ± 5.4 m/s for QBO-W but only −4.7 ± 5.2 m/s for QBO-E). This is due to a change of the extratropical QBO-W signature toward QBO-E signature while the equatorial QBO remains nearly unchanged (i.e., a change toward disappearance of the so-called Holton-Tan relationship). Similar to the current change from QBO-W to QBO-E signature, the changes during QBO-W include an increase in amplitude and eastward shift in phase of stratospheric stationary Wave 1 at the cost of Wave 2, with decreasing westerlies over North America and increasing downwelling over Siberia. The eastward shift in phase of stationary Wave 1 is related to the associated increase in meridional transport of planetary vorticity. © 2019. The Authors.
  • Item
    The world’s biggest gamble
    (Hoboken, NJ : Wiley, 2016) Rockström, Johan; Schellnhuber, Hans Joachim; Hoskins, Brian; Ramanathan, Veerabhadran; Schlosser, Peter; Brasseur, Guy Pierre; Gaffney, Owen; Nobre, Carlos; Meinshausen, Malte; Rogelj, Joeri; Lucht, Wolfgang
    The scale of the decarbonisation challenge to meet the Paris Agreement is underplayed in the public arena. It will require precipitous emissions reductions within 40 years and a new carbon sink on the scale of the ocean sink. Even then, the world is extremely likely to overshoot. A catastrophic failure of policy, for example, waiting another decade for transformative policy and full commitments to fossil‐free economies, will have irreversible and deleterious repercussions for humanity's remaining time on Earth. Only a global zero carbon roadmap will put the world on a course to phase‐out greenhouse gas emissions and create the essential carbon sinks for Earth‐system stability, without which, world prosperity is not possible.
  • Item
    Global observations of 2 day wave coupling to the diurnal tide in a high‐altitude forecast‐assimilation system
    (Hoboken, NJ : Wiley, 2017-4-18) Lieberman, R.S.; Riggin, D.M.; Nguyen, V.; Palo, S.E.; Siskind, D.E.; Mitchell, N.J.; Stober, G.; Wilhelm, S.; Livesey, N.J.
    We examine wave components in a high-altitude forecast-assimilation system that arise from nonlinear interaction between the diurnal tide and the westward traveling quasi 2 day wave. The process yields a westward traveling “sum” wave with zonal wave number 4 and a period of 16 h, and an eastward traveling “difference” wave with zonal wave number 2 and a period of 2 days. While the eastward 2 day wave has been reported in satellite temperatures, the westward 16 h wave lies outside the Nyquist limits of resolution of twice daily local time satellite sampling. Hourly output from a high-altitude forecast-assimilation model is used to diagnose the nonlinear quadriad. A steady state primitive equation model forced by tide-2 day wave advection is used to intepret the nonlinear wave products. The westward 16 h wave maximizes in the midlatitude winter mesosphere and behaves like an inertia-gravity wave. The nonlinearly generated component of the eastward 2 day wave maximizes at high latitudes in the lower thermosphere, and only weakly penetrates to low latitudes. The 16 h and the eastward 2 day waves are of comparable amplitude and alias to the same apparent frequency when viewed from a satellite perspective.
  • Item
    Weakening of Jupiter's main auroral emission during January 2014
    (Hoboken, NJ : Wiley, 2016) Badman, S.V.; Bonfond, B.; Fujimoto, M.; Gray, R.L.; Kasaba, Y.; Kasahara, S.; Kimura, T.; Melin, H.; Nichols, J.D.; Steffl, A.J.; Tao, C.; Tsuchiya, F.; Yamazaki, A.; Yoneda, M.; Yoshikawa, I.; Yoshioka, K.
    In January 2014 Jupiter's FUV main auroral oval decreased its emitted power by 70% and shifted equatorward by ∼1°. Intense, low-latitude features were also detected. The decrease in emitted power is attributed to a decrease in auroral current density rather than electron energy. This could be caused by a decrease in the source electron density, an order of magnitude increase in the source electron thermal energy, or a combination of these. Both can be explained either by expansion of the magnetosphere or by an increase in the inward transport of hot plasma through the middle magnetosphere and its interchange with cold flux tubes moving outward. In the latter case the hot plasma could have increased the electron temperature in the source region and produced the intense, low-latitude features, while the increased cold plasma transport rate produced the shift of the main oval.
  • Item
    Marine nanogels as a source of atmospheric nanoparticles in the high Arctic
    (Hoboken, NJ : Wiley, 2013) Karl, Matthias; Leck, Caroline; Coz, Esther; Heintzenberg, Jost
    The high Arctic (north of 80°N) in summer is a region characterized by clean air and low abundances of preexisting particles. Marine colloidal nanogels i.e., assembled dissolved organic carbohydrate polymer networks have recently been confirmed to be present in both airborne particles and cloud water over the Arctic pack ice area. A novel route to atmospheric nanoparticles that appears to be operative in the high Arctic is suggested. It involves the injection of marine granular nanogels into the air from evaporating fog and cloud droplets, and is supported by observational and theoretical evidence obtained from a case study. Statistical analysis of the aerosol size distribution data recorded in the years 1991, 1996, 2001, and 2008 classified 75 nanoparticle events - covering 17% of the observed time period - as nanogel-type events, characterized by the spontaneous appearance of several distinct size bands below 200 nm diameter.
  • Item
    Near-surface fault detection using high-resolution shear wave reflection seismics at the CO2CRC Otway Project site, Australia
    (Hoboken, NJ : Wiley, 2016) Beilecke, Thies; Krawczyk, Charlotte M.; Ziesch, Jennifer; Tanner, David C.
    High-resolution, near-surface, shear wave reflection seismic measurements were carried out in November 2013 at the CO2CRC Otway Project site, Victoria, Australia, with the aim to determine whether and, if so, where deeper faults reach the near subsurface. From a previous P wave 3-D reflection seismic data set that was concentrated on a reservoir at 2 km depth, we can only interpret faults up to 400 m below sea level. For the future monitoring in the overburden of the CO2 reservoir it is important to know whether and how the faults continue in the subsurface. We prove that two regional fault zones do in fact reach the surface instead of dying out at depth. Individual first-break signatures in the shot gathers along the profiles support this interpretation. However, this finding does not imply perforce communication between the reservoir and the surface in the framework of CO2 injection. The shear wave seismic sections are complementary to existing P wave volumes. They image with high resolution (better than 3 m vertically) different tectonic structures. Similar structures also outcrop on the southern coast of the Otway Basin. Both the seismic and the outcrops evidence the complex youngest structural history of the area.
  • Item
    Consecutive extreme flooding and heat wave in Japan: Are they becoming a norm?
    (Hoboken, NJ : Wiley, 2019) Wang, Simon S.-Y.; Kim, Hyungjun; Coumou, Dim; Yoon, Jin-Ho; Zhao, Lin; Gillies, Robert R.
    [No abstract available]