Search Results

Now showing 1 - 2 of 2
  • Item
    Deviations from a general nonlinear wind balance: Local and zonal-mean perspectives
    (Stuttgart : Gebrüder Bornträger Verlagsbuchhandlung, 2014) Gassmann, A.
    The paper introduces the active wind as the deviation from a general local wind balance, the inactive wind. The inactive wind is directed along intersection lines of Bernoulli function and potential temperature surfaces. In climatological steady state, the inactive mass flux cannot participate in net-mass fluxes, because the mean position of the mentioned intersection lines does not change. A conceptual proximity of the zonal-mean active wind to the residual wind as occurring in the transformed Eulerian mean equations suggests itself. The zonaland time-mean active wind is compared to the residual wind for the Held-Suarez test case. Similarities occur for the meridional components in the zone of Rossby wave breaking in the upper troposphere equatorward of the jet. The vertical components are similar, too. However, the vertical active wind is much stronger in the baroclinic zone. This is due to the missing vertical eddy flux of Ertel's potential vorticity (EPV) in the TEM equations. The largest differences are to be found in the boundary layer, where the active wind exhibits typical pattern of Ekman dynamics. Instantaneous active wind vectors demonstrate mass-inflow for lows and mass-outflow for highs in the boundary layer. An active meridional wind is associated with a filamentation of EPV in the zone of Rossby wave breaking in about 300 hPa. Strong gradients of EPV act as a transport barrier.
  • Item
    On the upper tropospheric formation and occurrence of high and thin cirrus clouds during anticyclonic poleward Rossby wave breaking events
    (Milton Park : Taylor & Francis, 2010) Eixmann, Ronald; Peters, Dieter H.W.; Zülicke, Christoph; Gerding, Michael; Dörnbrack, Andreas
    Ground-based lidar measurements and balloon soundings were employed to examine the dynamical link between anticyclonic Rossby wave breaking and cirrus clouds from 13 to 15 February 2006. For this event, an air mass with low Ertel’s potential vorticity appeared over Central Europe. In the tropopause region, this air mass was accompanied with both an area of extreme cold temperatures placed northeastward, and an area of high specific humidity, located southwestward. ECMWF analyses reveal a strong adiabatic northeastward and upward transport of water vapour within the warm conveyor belt on the western side of the ridge over Mecklenburg, Northern Germany. The backscatter lidar at K¨uhlungsborn (54.1◦N, 11.8◦E) clearly identified cirrus clouds at between 9 and 11.4 km height. In the tropopause region high-vertical resolution radiosoundings showed layers of subsaturated water vapour over ice but with a relative humidity over ice >80%. Over Northern Germany radiosondes indicated anticyclonically rotating winds in agreement with backward trajectories of ECMWF analyses in the upper troposphere, which were accompanied by a relatively strong increase of the tropopause height on 14 February. Based on ECMWF data the strong link between the large-scale structure, updraft and ice water content was shown.