Search Results

Now showing 1 - 5 of 5
  • Item
    Assessing the organic fraction of municipal solid wastes for the production of lactic acid
    (Amsterdam [u.a.] : Elsevier, 2019) López-Gómez, J. Pablo; Latorre-Sánchez, Marcos; Unger, Peter; Schneider, Roland; Coll Lozano, Caterina; Venus, Joachim
    With an estimated yearly production of about 140 Mt in the EU, conventionally, the organic fraction of municipal solid wastes (OFMSW) has been disposed in landfills with negative environmental effects. Nonetheless, the chemical composition of this residue make it a substrate with great bioconversion potential. In this study, OFMSW from Spanish municipal treatment plants, were evaluated for the production of LA. Samples were identified according to the sorting mechanisms employed for their collection in: (A) separately collected, (B) non-separately collected and (C) separately collected+paper/cardboard. Enzymatic hydrolysis was used to produce hydrolysates A, B and C accordingly. Hydrolysate A showed the highest total sugars and glucose content with values of 70 and 55 g·L−1, respectively. Following the characterisation, a screening showed that growth of B. coagulans was possible in all three hydrolysates. Furthermore, lab scale fermentations showed that LA final concentrations could reach around 60 g·L−1, with yields from total sugars of above 0.60 g·g−1. A technical scale fermentation of the hydrolysate A resulted in a final LA concentration of 60.7 g·L−1, a yield of 0.71 g·g−1 with a productivity of 2.68 g·L−1·h−1. Overall, it was estimated that 0.23 g of LA could be produced from one g of dry OFMSW.
  • Item
    Example dataset for the hMRI toolbox
    (Amsterdam [u.a.] : Elsevier, 2019) Callaghan, Martina F.; Lutti, Antoine; Ashburner, John; Balteau, Evelyne; Corbin, Nadège; Draganski, Bogdan; Helms, Gunther; Kherif, Ferath; Leutritz, Tobias; Mohammadi, Siawoosh; Phillips, Christophe; Reimer, Enrico; Ruthotto, Lars; Seif, Maryam; Tabelow, Karsten; Ziegler, Gabriel; Weiskopf, Nikolaus
    The hMRI toolbox is an open-source toolbox for the calculation of quantitative MRI parameter maps from a series of weighted imaging data, and optionally additional calibration data. The multi-parameter mapping (MPM) protocol, incorporating calibration data to correct for spatial variation in the scanner's transmit and receive fields, is the most complete protocol that can be handled by the toolbox. Here we present a dataset acquired with such a full MPM protocol, which is made freely available to be used as a tutorial by following instructions provided on the associated toolbox wiki pages, which can be found at http://hMRI.info, and following the theory described in: hMRI – A toolbox for quantitative MRI in neuroscience and clinical research [1].
  • Item
    Biofunctionalized aligned microgels provide 3D cell guidance to mimic complex tissue matrices
    (Amsterdam [u.a.] : Elsevier, 2018) Rose, Jonas C.; Gehlen, David B.; Haraszti, Tamás; Köhler, Jens; Licht, Christopher J.; De Laporte, Laura
    Natural healing is based on highly orchestrated processes, in which the extracellular matrix plays a key role. To resemble the native cell environment, we introduce an artificial extracellular matrix (aECM) with the capability to template hierarchical and anisotropic structures in situ, allowing a minimally-invasive application via injection. Synthetic, magnetically responsive, rod-shaped microgels are locally aligned and fixed by a biocompatible surrounding hydrogel, creating a hybrid anisotropic hydrogel (Anisogel), of which the physical, mechanical, and chemical properties can be tailored. The microgels are rendered cell-adhesive with GRGDS and incorporated either inside a cell-adhesive fibrin or bioinert poly(ethylene glycol) hydrogel to strongly interact with fibroblasts. GRGDS-modified microgels inside a fibrin-based Anisogel enhance fibroblast alignment and lead to a reduction in fibronectin production, indicating successful replacement of structural proteins. In addition, YAP-translocation to the nucleus increases with the concentration of microgels, indicating cellular sensing of the overall anisotropic mechanical properties of the Anisogel. For bioinert surrounding PEG hydrogels, GRGDS-microgels are required to support cell proliferation and fibronectin production. In contrast to fibroblasts, primary nerve growth is not significantly affected by the biomodification of the microgels. In conclusion, this approach opens new opportunities towards advanced and complex aECMs for tissue regeneration.
  • Item
    Proteiniphilum saccharofermentans str. M3/6T isolated from a laboratory biogas reactor is versatile in polysaccharide and oligopeptide utilization as deduced from genome-based metabolic reconstructions
    (Amsterdam [u.a.] : Elsevier, 2018) Tomazetto, Geizecler; Hahnke, Sarah; Wibberg, Daniel; Pühler, Alfred; Klocke, Michael; Schlüter, Andreas
    Proteiniphilum saccharofermentans str. M3/6T is a recently described species within the family Porphyromonadaceae (phylum Bacteroidetes), which was isolated from a mesophilic laboratory-scale biogas reactor. The genome of the strain was completely sequenced and manually annotated to reconstruct its metabolic potential regarding biomass degradation and fermentation pathways. The P. saccharofermentans str. M3/6T genome consists of a 4,414,963 bp chromosome featuring an average GC-content of 43.63%. Genome analyses revealed that the strain possesses 3396 protein-coding sequences. Among them are 158 genes assigned to the carbohydrate-active-enzyme families as defined by the CAZy database, including 116 genes encoding glycosyl hydrolases (GHs) involved in pectin, arabinogalactan, hemicellulose (arabinan, xylan, mannan, β-glucans), starch, fructan and chitin degradation. The strain also features several transporter genes, some of which are located in polysaccharide utilization loci (PUL). PUL gene products are involved in glycan binding, transport and utilization at the cell surface. In the genome of strain M3/6T, 64 PUL are present and most of them in association with genes encoding carbohydrate-active enzymes. Accordingly, the strain was predicted to metabolize several sugars yielding carbon dioxide, hydrogen, acetate, formate, propionate and isovalerate as end-products of the fermentation process. Moreover, P. saccharofermentans str. M3/6T encodes extracellular and intracellular proteases and transporters predicted to be involved in protein and oligopeptide degradation. Comparative analyses between P. saccharofermentans str. M3/6T and its closest described relative P. acetatigenes str. DSM 18083T indicate that both strains share a similar metabolism regarding decomposition of complex carbohydrates and fermentation of sugars. © 2018 The Authors
  • Item
    Propagating and localized surface plasmon resonance sensing — A critical comparison based on measurements and theory
    (Amsterdam [u.a.] : Elsevier, 2016) Jatschka, Jacqueline; Dathe, André; Csáki, Andrea; Fritzsche, Wolfgang; Stranik, Ondrej
    With its potential for ultrasensitive, label-free detection of molecular interactions, sensing methods based on the surface plasmon resonance (SPR) effect fully meet the requirements for modern analytical techniques. Already established by using propagating SPR in thin gold layers, the last years witnessed the emergence of another related technique utilizing extremely miniaturized noble metal sensor structures, based on a localized SPR. This paper provides a critical comparison of these kinds of SPR sensing, reviews the foundation of both general approaches, presents experimental data on exactly the same molecular model system using both techniques, as well as theoretical considerations in order to allow reasonable comparison. It highlights the specific features and effects, in order to provide guidance in choosing the right technique for given bioanalytical tasks. The study demonstrated the capabilities of LSPR for sensing of molecular layers even in the lower nanometer dimension. For the detection of small (bio)molecules, smaller particle diameters are favored regarding highest sensitivity. It also presents an approach to obtain refractive index and the thickness of a molecular film by analyzing the signal response of plasmonic sensors with metal nanoparticles. Moreover, an additional method for the improvement of the parameters' determination is introduced.