Search Results

Now showing 1 - 10 of 30
Loading...
Thumbnail Image
Item

Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry

2015, Oetjen, Janina, Veselkov, Kirill, Watrous, Jeramie, McKenzie, James S., Becker, Michael, Hauberg-Lotte, Lena, Kobarg, Jan Hendrik, Strittmatter, Nicole, Mróz, Anna K., Hoffmann, Franziska, Trede, Dennis, Palmer, Andrew, Schiffler, Stefan, Steinhorst, Klaus, Aichler, Michaela, Goldin, Robert, Guntinas-Lichius, Orlando, von Eggeling, Ferdinand, Thiele, Herbert, Maedler, Kathrin, Walch, Axel, Maass, Peter, Dorrestein, Pieter C., Takats, Zoltan, Alexandrov, Theodore

Background: Three-dimensional (3D) imaging mass spectrometry (MS) is an analytical chemistry technique for the 3D molecular analysis of a tissue specimen, entire organ, or microbial colonies on an agar plate. 3D-imaging MS has unique advantages over existing 3D imaging techniques, offers novel perspectives for understanding the spatial organization of biological processes, and has growing potential to be introduced into routine use in both biology and medicine. Owing to the sheer quantity of data generated, the visualization, analysis, and interpretation of 3D imaging MS data remain a significant challenge. Bioinformatics research in this field is hampered by the lack of publicly available benchmark datasets needed to evaluate and compare algorithms. Findings: High-quality 3D imaging MS datasets from different biological systems at several labs were acquired, supplied with overview images and scripts demonstrating how to read them, and deposited into MetaboLights, an open repository for metabolomics data. 3D imaging MS data were collected from five samples using two types of 3D imaging MS. 3D matrix-assisted laser desorption/ionization imaging (MALDI) MS data were collected from murine pancreas, murine kidney, human oral squamous cell carcinoma, and interacting microbial colonies cultured in Petri dishes. 3D desorption electrospray ionization (DESI) imaging MS data were collected from a human colorectal adenocarcinoma. Conclusions: With the aim to stimulate computational research in the field of computational 3D imaging MS, selected high-quality 3D imaging MS datasets are provided that could be used by algorithm developers as benchmark datasets.

Loading...
Thumbnail Image
Item

Linear and non-linear optical imaging of cancer cells with silicon nanoparticles

2016, Tolstik, Elen, Osminkina, Liubov A., Akimov, Denis, Gongalsky, Maksim B., Kudryavtsev, Andrew A., Timoshenko, Victor Yu., Heintzmann, Rainer, Sivakov, Vladimir, Popp, Jürgen

New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10–40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours.

Loading...
Thumbnail Image
Item

Fast, economic and simultaneous identification of clinically relevant Gram-negative species with multiplex real-time PCR

2019, Weiss, Daniel, Gawlik, Darius, Hotzel, Helmut, Engelmann, Ines, Mueller, Elke, Slickers, Peter, Braun, Sascha D., Monecke, Stefan, Ehricht, Ralf

Aim: A newly designed multiplex real-time PCR (rt-PCR) was validated to detect four clinically relevant Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa). Materials & methods: Serial dilutions of genomic DNA were used to determine the limit of detection. Colony PCR was performed with isolates of the four selected species and other species as negative controls. Isolates were characterized genotypically and phenotypically to evaluate the assay. Results: Specific signals of all target genes were detected with diluted templates comprising ten genomic equivalents. Using colony rt-PCR, all isolates of the target species were identified correctly. All negative control isolates were negative. Conclusion: The genes gad, basC, khe and ecfX can reliably identify these four species via multiplex colony rt-PCR. © 2018 Daniel Weiss.

Loading...
Thumbnail Image
Item

Caspase-1 inflammasome activity in patients with Staphylococcus aureus bacteremia

2019, Rasmussen, Gunlög, Idosa, Berhane Asfaw, Bäckman, Anders, Monecke, Stefan, Strålin, Kristoffer, Särndahl, Eva, Söderquist, Bo

The inflammasome is a multiprotein complex that mediates caspase-1 activation with subsequent maturation of the proinflammatory cytokines IL-1ß and IL-18. The NLRP3 inflammasome is known to be activated by Staphylococcus aureus, one of the leading causes of bacteremia worldwide. Inflammasome activation and regulation in response to bacterial infection have been found to be of importance for a balanced host immune response. However, inflammasome signaling in vivo in humans initiated by S. aureus is currently sparsely studied. This study therefore aimed to investigate NLRP3 inflammasome activity in 20 patients with S. aureus bacteremia (SAB), by repeated measurement during the first week of bacteremia, compared with controls. Caspase-1 activity was measured in monocytes and neutrophils by flow cytometry detecting FLICA (fluorescent-labeled inhibitor of caspase-1), while IL-1ß and IL-18 was measured by Luminex and ELISA, respectively. As a measure of inflammasome priming, messenger RNA (mRNA) expression of NLRP3, CASP1 (procaspase-1), and IL1B (pro-IL-1ß) was analyzed by quantitative PCR. We found induced caspase-1 activity in innate immune cells with subsequent release of IL-18 in patients during the acute phase of bacteremia, indicating activation of the inflammasome. There was substantial interindividual variation in caspase-1 activity between patients with SAB. We also found an altered inflammasome priming with low mRNA levels of NLRP3 accompanied by elevated mRNA levels of IL1B. This increased knowledge of the individual host immune response in SAB could provide support in the effort to optimize management and treatment of each individual patient. © 2019 The Authors. Microbiology and Immunology published by The Societies and John Wiley & Sons Australia, Ltd

Loading...
Thumbnail Image
Item

Different storage conditions influence biocompatibility and physicochemical properties of iron oxide nanoparticles

2015, Zaloga, Jan, Janko, Christina, Agarwal, Rohit, Nowak, Johannes, Müller, Robert, Boccaccini, Aldo R., Lee, Geoffrey, Odenbach, Stefan, Lyer, Stefan, Alexiou, Christoph

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted increasing attention in many biomedical fields. In magnetic drug targeting SPIONs are injected into a tumour supplying artery and accumulated inside the tumour with a magnet. The effectiveness of this therapy is thus dependent on magnetic properties, stability and biocompatibility of the particles. A good knowledge of the effect of storage conditions on those parameters is of utmost importance for the translation of the therapy concept into the clinic and for reproducibility in preclinical studies. Here, core shell SPIONs with a hybrid coating consisting of lauric acid and albumin were stored at different temperatures from 4 to 45 °C over twelve weeks and periodically tested for their physicochemical properties over time. Surprisingly, even at the highest storage temperature we did not observe denaturation of the protein or colloidal instability. However, the saturation magnetisation decreased by maximally 28.8% with clear correlation to time and storage temperature. Furthermore, the biocompatibility was clearly affected, as cellular uptake of the SPIONs into human T-lymphoma cells was crucially dependent on the storage conditions. Taken together, the results show that the particle properties undergo significant changes over time depending on the way they are stored.

Loading...
Thumbnail Image
Item

Raman spectroscopy follows time-dependent changes in T lymphocytes isolated from spleen of endotoxemic mice

2019, Ramoji, Anuradha, Ryabchykov, Oleg, Galler, Kerstin, Tannert, Astrid, Markwart, Robby, Requardt, Robert Pascal, Rubio, Ignacio, Bauer, Michael, Bocklitz, Thomas W., Popp, Jürgen, Neugebauer, Ute

T lymphocytes (T cells) are highly specialized members of the adaptive immune system and hold the key to the understanding the hosts’ response toward invading pathogen or pathogen-associated molecular patterns such as LPS. In this study, noninvasive Raman spectroscopy is presented as a label-free method to follow LPS-induced changes in splenic T cells during acute and postacute inflammatory phases (1, 4, 10, and 30 d) with a special focus on CD4+ and CD8+ T cells of endotoxemic C57BL/6 mice. Raman spectral analysis reveals highest chemical differences between CD4+ and CD8+ T cells originating from the control and LPS-treated mice during acute inflammation, and the differences are visible up to 10 d after the LPS insult. In the postacute phase, CD4+ and CD8+ T cells from treated and untreated mice could not be differentiated anymore, suggesting that T cells largely regained their original status. In sum, the biological information obtained from Raman spectra agrees with immunological readouts demonstrating that Raman spectroscopy is a well-suited, label-free method for following splenic T cell activation in systemic inflammation from acute to postacute phases. The method can also be applied to directly study tissue sections as is demonstrated for spleen tissue one day after LPS insult.T lymphocytes (T cells) are highly specialized members of the adaptive immune system and hold the key to the understanding the hosts’ response toward invading pathogen or pathogen-associated molecular patterns such as LPS. In this study, noninvasive Raman spectroscopy is presented as a label-free method to follow LPS-induced changes in splenic T cells during acute and postacute inflammatory phases (1, 4, 10, and 30 d) with a special focus on CD4+ and CD8+ T cells of endotoxemic C57BL/6 mice. Raman spectral analysis reveals highest chemical differences between CD4+ and CD8+ T cells originating from the control and LPS-treated mice during acute inflammation, and the differences are visible up to 10 d after the LPS insult. In the postacute phase, CD4+ and CD8+ T cells from treated and untreated mice could not be differentiated anymore, suggesting that T cells largely regained their original status. In sum, the biological information obtained from Raman spectra agrees with immunological readouts demonstrating that Raman spectroscopy is a well-suited, label-free method for following splenic T cell activation in systemic inflammation from acute to postacute phases. The method can also be applied to directly study tissue sections as is demonstrated for spleen tissue one day after LPS insult.

Loading...
Thumbnail Image
Item

Evolution and Global Transmission of a Multidrug-Resistant, Community-Associated Methicillin-Resistant Staphylococcus aureus Lineage from the Indian Subcontinent

2019, Steinig, Eike J., Duchene, Sebastian, Robinson, D. Ashley, Monecke, Stefan, Yokoyama, Maho, Laabei, Maisem, Slickers, Peter, Andersson, Patiyan, Williamson, Deborah, Kearns, Angela, Goering, Richard V., Dickson, Elizabeth, Ehricht, Ralf, Ip, Margaret, O'Sullivan, Matthew V.N., Coombs, Geoffrey, Petersen, Andreas, Brennan, Gráinne I., Shore, Anna C., Coleman, David C., Pantosti, Annalisa, de Lencastre, Herminia, Westh, Henrik, Kobayashi, Nobumichi, Heffernan, Helen, Strommenger, Birgit, Layer, Franziska, Weber, Stefan, Aamot, Hege Vangstein, Skakni, Leila, Peacock, Sharon J., Sarovich, Derek, Harris, Simon, Parkhill, Julian, Massey, Ruth C., Holden, Mathew T.G., Bentley, Stephen, Tong, Stephen Y.C.

The evolution and global transmission of antimicrobial resistance have been well documented for Gram-negative bacteria and health care-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. In this study, we traced the recent origins and global spread of a multidrug-resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole-genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data show that the clone emerged on the Indian subcontinent in the early 1960s and disseminated rapidly in the 1990s. Short-term outbreaks in community and health care settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the emergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth, and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional health care-associated clones with the epidemiological transmission of community-associated methicillin-resistant S. aureus (MRSA). Our study demonstrates the importance of whole-genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere.

Loading...
Thumbnail Image
Item

Shared MRSA Strains among Nepalese Rhesus macaques (Macaca mulatta), their Environment and Hospitalized Patients

2019, Roberts, Marilyn C., Joshi, Prabhu Raj, Monecke, Stefan, Ehricht, Ralf, Müller, Elke, Gawlik, Darius, Paudel, Saroj, Acharya, Mahesh, Bhattarai, Sankalpa, Pokharel, Sujana, Tuladhar, Reshma, Chalise, Mukesh K., Kyes, Randall C.

This study looked at 227 saliva samples from Rhesus macaques (Macaca mulatta) and 218 samples from the surrounding environments. From these samples, MRSA isolates were collected from Rhesus saliva samples (n = 13) and environmental samples (n = 19) near temple areas in Kathmandu, Nepal. For comparison, selected MRSA isolates (n = 5) were obtained from patients with wound infections from a Kathmandu hospital. All isolates were characterized using Abbott StaphyType® DNA microarrays. Eighteen isolates (62%) from monkeys (n = 4; 31%) and environmental samples (n = 14; 74%), were CC22-MRSA-IV. Most (n = 16) of them carried both, the PVL locus and toxic shock toxin gene (tst1), an unusual combination which is the same as in previously characterized strain from Nepalese macaques and pigs. The five human isolates also belonged to that strain type. Eight monkey MRSA isolates were CC361-MRSA-IV. One MRSA from a monkey and one from an environmental sample, were CC88-MRSA-V. Other environmental MRSA included one each, CC121-MRSA-VT, and CC772 -MRSA-V. Two were CC779-MRSA-VT, potentially a novel clone. All MRSA carried the blaZ gene. The aacA–aphD, dfrA, and erm (C) genes were very common in isolates from all sources. One macaque MRSA carried the resistance genes aphA3 and sat, neither previously identified in primate MRSA isolates. This current study suggests that humans could be a potential source of the MRSA in the macaques/environment and transmission may be linked to humans feeding the primates and/or living in close proximity to each other.This study looked at 227 saliva samples from Rhesus macaques (Macaca mulatta) and 218 samples from the surrounding environments. From these samples, MRSA isolates were collected from Rhesus saliva samples (n = 13) and environmental samples (n = 19) near temple areas in Kathmandu, Nepal. For comparison, selected MRSA isolates (n = 5) were obtained from patients with wound infections from a Kathmandu hospital. All isolates were characterized using Abbott StaphyType® DNA microarrays. Eighteen isolates (62%) from monkeys (n = 4; 31%) and environmental samples (n = 14; 74%), were CC22-MRSA-IV. Most (n = 16) of them carried both, the PVL locus and toxic shock toxin gene (tst1), an unusual combination which is the same as in previously characterized strain from Nepalese macaques and pigs. The five human isolates also belonged to that strain type. Eight monkey MRSA isolates were CC361-MRSA-IV. One MRSA from a monkey and one from an environmental sample, were CC88-MRSA-V. Other environmental MRSA included one each, CC121-MRSA-VT, and CC772 -MRSA-V. Two were CC779-MRSA-VT, potentially a novel clone. All MRSA carried the blaZ gene. The aacA–aphD, dfrA, and erm (C) genes were very common in isolates from all sources. One macaque MRSA carried the resistance genes aphA3 and sat, neither previously identified in primate MRSA isolates. This current study suggests that humans could be a potential source of the MRSA in the macaques/environment and transmission may be linked to humans feeding the primates and/or living in close proximity to each other.

Loading...
Thumbnail Image
Item

Vinculin binding angle in podosomes revealed by high resolution microscopy

2014, Walde, M., Monypenny, J., Heintzmann, R., Jones, G.E., Cox, S.

Podosomes are highly dynamic actin-rich adhesive structures formed predominantly by cells of the monocytic lineage, which degrade the extracellular matrix. They consist of a core of F-actin and actin-regulating proteins, surrounded by a ring of adhesion-associated proteins such as vinculin. We have characterised the structure of podosomes in macrophages, particularly the structure of the ring, using three super-resolution fluorescence microscopy techniques: stimulated emission depletion microscopy, structured illumination microscopy and localisation microscopy. Rather than being round, as previously assumed, we found the vinculin ring to be created from relatively straight strands of vinculin, resulting in a distinctly polygonal shape. The strands bind preferentially at angles between 116° and 135°. Furthermore, adjacent vinculin strands are observed nucleating at the corners of the podosomes, suggesting a mechanism for podosome growth.

Loading...
Thumbnail Image
Item

Charge isomers of myelin basic protein: Structure and interactions with membranes, nucleotide analogues, and calmodulin

2011, Wang, C., Neugebauer, U., Bürck, J., Myllykoski, M., Baumgärtel, P., Popp, J., Kursula, P.

As an essential structural protein required for tight compaction of the central nervous system myelin sheath, myelin basic protein (MBP) is one of the candidate autoantigens of the human inflammatory demyelinating disease multiple sclerosis, which is characterized by the active degradation of the myelin sheath. In this work, recombinant murine analogues of the natural C1 and C8 charge components (rmC1 and rmC8), two isoforms of the classic 18.5-kDa MBP, were used as model proteins to get insights into the structure and function of the charge isomers. Various biochemical and biophysical methods such as size exclusion chromatography, calorimetry, surface plasmon resonance, small angle X-ray and neutron scattering, Raman and fluorescence spectroscopy, and conventional as well as synchrotron radiation circular dichroism were used to investigate differences between these two isoforms, both from the structural point of view, and regarding interactions with ligands, including calmodulin (CaM), various detergents, nucleotide analogues, and lipids. Overall, our results provide further proof that rmC8 is deficient both in structure and especially in function, when compared to rmC1. While the CaM binding properties of the two forms are very similar, their interactions with membrane mimics are different. CaM can be used to remove MBP from immobilized lipid monolayers made of synthetic lipids - a phenomenon, which may be of relevance for MBP function and its regulation. Furthermore, using fluorescently labelled nucleotides, we observed binding of ATP and GTP, but not AMP, by MBP; the binding of nucleoside triphosphates was inhibited by the presence of CaM. Together, our results provide important further data on the interactions between MBP and its ligands, and on the differences in the structure and function between MBP charge isomers.