Search Results

Now showing 1 - 10 of 38
  • Item
    Nonresonant Raman spectroscopy of isolated human retina samples complying with laser safety regulations for in vivo measurements
    (Bellingham, Wash. : SPIE, 2019) Stiebing, Clara; Schie, Iwan W.; Knorr, Florian; Schmitt, Michael; Keijzer, Nanda; Kleemann, Robert; Jahn, Izabella J.; Jahn, Martin; Kiliaan, Amanda J.; Ginner, Laurin; Lichtenegger, Antonia; Drexler, Wolfgang; Leitgeb, Rainer A.; Popp, Jürgen
    Retinal diseases, such as age-related macular degeneration, are leading causes of vision impairment, increasing in incidence worldwide due to an aging society. If diagnosed early, most cases could be prevented. In contrast to standard ophthalmic diagnostic tools, Raman spectroscopy can provide a comprehensive overview of the biochemical composition of the retina in a label-free manner. A proof of concept study of the applicability of nonresonant Raman spectroscopy for retinal investigations is presented. Raman imaging provides valuable insights into the molecular composition of an isolated ex vivo human retina sample by probing the entire molecular fingerprint, i.e., the lipid, protein, carotenoid, and nucleic acid content. The results are compared to morphological information obtained by optical coherence tomography of the sample. The challenges of in vivo Raman studies due to laser safety limitations and predefined optical parameters given by the eye itself are explored. An in-house built setup simulating the optical pathway in the human eye was developed and used to demonstrate that even under laser safety regulations and the above-mentioned optical restrictions, Raman spectra of isolated ex vivo human retinas can be recorded. The results strongly support that in vivo studies using nonresonant Raman spectroscopy are feasible and that these studies provide comprehensive molecular information of the human retina. © The Authors. Published by SPIE.
  • Item
    Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry
    (Oxford : Oxford University Press, 2015) Oetjen, Janina; Veselkov, Kirill; Watrous, Jeramie; McKenzie, James S.; Becker, Michael; Hauberg-Lotte, Lena; Kobarg, Jan Hendrik; Strittmatter, Nicole; Mróz, Anna K.; Hoffmann, Franziska; Trede, Dennis; Palmer, Andrew; Schiffler, Stefan; Steinhorst, Klaus; Aichler, Michaela; Goldin, Robert; Guntinas-Lichius, Orlando; von Eggeling, Ferdinand; Thiele, Herbert; Maedler, Kathrin; Walch, Axel; Maass, Peter; Dorrestein, Pieter C.; Takats, Zoltan; Alexandrov, Theodore
    Background: Three-dimensional (3D) imaging mass spectrometry (MS) is an analytical chemistry technique for the 3D molecular analysis of a tissue specimen, entire organ, or microbial colonies on an agar plate. 3D-imaging MS has unique advantages over existing 3D imaging techniques, offers novel perspectives for understanding the spatial organization of biological processes, and has growing potential to be introduced into routine use in both biology and medicine. Owing to the sheer quantity of data generated, the visualization, analysis, and interpretation of 3D imaging MS data remain a significant challenge. Bioinformatics research in this field is hampered by the lack of publicly available benchmark datasets needed to evaluate and compare algorithms. Findings: High-quality 3D imaging MS datasets from different biological systems at several labs were acquired, supplied with overview images and scripts demonstrating how to read them, and deposited into MetaboLights, an open repository for metabolomics data. 3D imaging MS data were collected from five samples using two types of 3D imaging MS. 3D matrix-assisted laser desorption/ionization imaging (MALDI) MS data were collected from murine pancreas, murine kidney, human oral squamous cell carcinoma, and interacting microbial colonies cultured in Petri dishes. 3D desorption electrospray ionization (DESI) imaging MS data were collected from a human colorectal adenocarcinoma. Conclusions: With the aim to stimulate computational research in the field of computational 3D imaging MS, selected high-quality 3D imaging MS datasets are provided that could be used by algorithm developers as benchmark datasets.
  • Item
    Development of a miniaturized protein microarray as a new serological IgG screening test for zoonotic agents and production diseases in pigs
    (San Francisco, California, US : PLOS, 2019) Loreck, Katharina; Mitrenga, Sylvia; Meemken, Diana; Heinze, Regina; Reissig, Annett; Mueller, Elke; Ehricht, Ralf; Engemann, Claudia; Greiner, Matthias
    In order to monitor the occurrence of zoonotic agents in pig herds as well as to improve herd health management, the development of new cost-effective diagnostic methods for pigs is necessary. In this study, a protein microarray-based assay for the simultaneous detection of immunoglobulin G (IgG) antibodies against different zoonotic agents and pathogens causing production diseases in pigs was developed. Therefore, antigens of ten different important swine pathogens (Toxoplasma gondii, Yersinia enterocolitica, Salmonella spp., Trichinella spp., Mycobacterium avium, Hepatitis E virus, Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, the porcine reproductive and respiratory syndrome virus, Influenza A virus) were spotted and covalently immobilized as ‘antigen-spots’ on microarray chips in order to test pig serum for the occurrence of antibodies. Pig serum was sampled at three German abattoirs and ELISA tests for the different pathogens were conducted with the purpose of creating a panel of reference samples for microarray analysis. To evaluate the accuracy of the antigens on the microarray, receiver operating characteristic (ROC) curve analysis using the ELISA test results as reference was performed for the different antigens. High area under curve values were achieved for the antigens of two zoonotic agents: Toxoplasma gondii (0.91), Yersinia enterocolitica (0.97) and for three production diseases: Actinobacillus pleuropneumoniae (0.77), Mycoplasma hyopneumoniae (0.94) and the porcine reproductive and respiratory syndrome virus (0.87). With the help of the newly developed microarray assay, collecting data on the occurrence of antibodies against zoonotic agents and production diseases in pig herds could be minimized to one measurement, resulting in an efficient screening test.
  • Item
    Characterisation of a novel composite SCCmec-SCCfus element in an emerging Staphylococcus aureus strain from the Arabian Gulf region
    (San Francisco : Public Library of Science, 2019) Senok, Abiola; Slickers, Peter; Hotzel, Helmut; Boswihi, Samar; Braun, Sascha D.; Gawlik, Darius; Müller, Elke; Nabi, Anju; Nassar, Rania; Nitschke, Hedda; Reißig, Annett; Ruppelt-Lorz, Antje; Mafofo, Joseph; Somili, Ali M.; Udo, Edet; Ehricht, Ralf; Monecke, Stefan
    Fusidic acid is a steroid antibiotic known since the 1960s. It is frequently used in topical preparations, i.e., ointments, for the treatment of skin and soft tissue infections caused by Staphylococcus aureus. There is an increasing number of methicillin-resistant S. aureus (MRSA) strains that harbour plasmid-borne fusB/far1 or fusC that is localised on SCC elements. In this study we examined a series of related CC30-MRSA isolates from the Arabian Gulf countries that presented with SCCmec elements and fusC, including a variant that—to the best of our knowledge—has not yet formally been described. It consisted of a class B mec complex and ccrA/B-4 genes. The fusidic acid resistance gene fusC was present, but contrary to the previously sequenced element of HDE288, it was not accompanied by tirS. This element was identified in CC30 MRSA from Kuwait, Saudi Arabia and the United Arab Emirates that usually also harbour the Panton-Valentin leukocidin (PVL) genes. It was also identified in CC8 and ST834 isolates. In addition, further CC30 MRSA strains with other SCCmec VI elements harbouring fusC were found to circulate in the Arabian Gulf region. It can be assumed that MRSA strains with SCCmec elements that include fusC have a selective advantage in both hospital and community settings warranting a review of the use of topical antibiotics and indicating the necessity of reducing over-the-counter sale of antibiotics, including fusidic acid, without prescription.Fusidic acid is a steroid antibiotic known since the 1960s. It is frequently used in topical preparations, i.e., ointments, for the treatment of skin and soft tissue infections caused by Staphylococcus aureus. There is an increasing number of methicillin-resistant S. aureus (MRSA) strains that harbour plasmid-borne fusB/far1 or fusC that is localised on SCC elements. In this study we examined a series of related CC30-MRSA isolates from the Arabian Gulf countries that presented with SCCmec elements and fusC, including a variant that—to the best of our knowledge—has not yet formally been described. It consisted of a class B mec complex and ccrA/B-4 genes. The fusidic acid resistance gene fusC was present, but contrary to the previously sequenced element of HDE288, it was not accompanied by tirS. This element was identified in CC30 MRSA from Kuwait, Saudi Arabia and the United Arab Emirates that usually also harbour the Panton-Valentin leukocidin (PVL) genes. It was also identified in CC8 and ST834 isolates. In addition, further CC30 MRSA strains with other SCCmec VI elements harbouring fusC were found to circulate in the Arabian Gulf region. It can be assumed that MRSA strains with SCCmec elements that include fusC have a selective advantage in both hospital and community settings warranting a review of the use of topical antibiotics and indicating the necessity of reducing over-the-counter sale of antibiotics, including fusidic acid, without prescription.
  • Item
    Liver Dysfunction and Phosphatidylinositol-3-Kinase Signalling in Early Sepsis: Experimental Studies in Rodent Models of Peritonitis
    (San Francisco, CA : Public Library of Science, 2012) Recknagel, P.; Gonnert, F.A.; Westermann, M.; Lambeck, S.; Lupp, A.; Rudiger, A.; Dyson, A.; Carré, J.E.; Kortgen, A.; Krafft, C.; Popp, J.; Sponholz, C.; Fuhrmann, V.; Hilger, I.; Claus, R.A.; Riedemann, N.C.; Wetzker, R.; Singer, M.; Trauner, M.; Bauer, M.
    Background: Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings: In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions: Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice. Please see later in the article for the Editors' Summary.
  • Item
    In-vivo Raman spectroscopy: from basics to applications
    (Bellingham, Wash. : SPIE, 2018) Cordero, Eliana; Latka, Ines; Matthäus, Christian; Schie, Iwan W.; Popp, Jürgen
    For more than two decades, Raman spectroscopy has found widespread use in biological and medical applications. The instrumentation and the statistical evaluation procedures have matured, enabling the lengthy transition from ex-vivo demonstration to in-vivo examinations. This transition goes hand-in-hand with many technological developments and tightly bound requirements for a successful implementation in a clinical environment, which are often difficult to assess for novice scientists in the field. This review outlines the required instrumentation and instrumentation parameters, designs, and developments of fiber optic probes for the in-vivo applications in a clinical setting. It aims at providing an overview of contemporary technology and clinical trials and attempts to identify future developments necessary to bring the emerging technology to the clinical end users. A comprehensive overview of in-vivo applications of fiber optic Raman probes to characterize different tissue and disease types is also given.
  • Item
    Fast, economic and simultaneous identification of clinically relevant Gram-negative species with multiplex real-time PCR
    (London : Future Medicine Ltd, 2019) Weiss, Daniel; Gawlik, Darius; Hotzel, Helmut; Engelmann, Ines; Mueller, Elke; Slickers, Peter; Braun, Sascha D.; Monecke, Stefan; Ehricht, Ralf
    Aim: A newly designed multiplex real-time PCR (rt-PCR) was validated to detect four clinically relevant Gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa). Materials & methods: Serial dilutions of genomic DNA were used to determine the limit of detection. Colony PCR was performed with isolates of the four selected species and other species as negative controls. Isolates were characterized genotypically and phenotypically to evaluate the assay. Results: Specific signals of all target genes were detected with diluted templates comprising ten genomic equivalents. Using colony rt-PCR, all isolates of the target species were identified correctly. All negative control isolates were negative. Conclusion: The genes gad, basC, khe and ecfX can reliably identify these four species via multiplex colony rt-PCR. © 2018 Daniel Weiss.
  • Item
    Zooming in on virus surface protein mobility
    (London : Future Medicine Ltd, 2018) Chojnacki, Jakub; Eggeling, Christian
    [no abstract available]
  • Item
    Urban brown rats (Rattus norvegicus) as possible source of multidrug-resistant Enterobacteriaceae and meticillin-resistant Staphylococcus spp., Vienna, Austria, 2016 and 2017
    (Stockholm : European Centre for Disease Prevention and Control, 2019) Desvars-Larrive, Amélie; Ruppitsch, Werner; Lepuschitz, Sarah; Szostak, Michael P.; Spergser, Joachim; Feßler, Andrea T.; Schwarz, Stefan; Monecke, Stefan; Ehricht, Ralf; Walzer, Chris; Loncaric, Igor
    Background: Brown rats (Rattus norvegicus) are an important wildlife species in cities, where they live in close proximity to humans. However, few studies have investigated their role as reservoir of antimicrobial-resistant bacteria. Aim: We intended to determine whether urban rats at two highly frequented sites in Vienna, Austria, carry extended-spectrum β-lactamase-producing Enterobacteriaceae, fluoroquinolone-resistant Enterobacteriaceae and meticillin-resistant (MR) Staphylococcus spp. (MRS). Methods: We surveyed the presence of antimicrobial resistance in 62 urban brown rats captured in 2016 and 2017 in Vienna, Austria. Intestinal and nasopharyngeal samples were cultured on selective media. We character-ised the isolates and their antimicrobial properties using microbiological and genetic methods including disk diffusion, microarray analysis, sequencing, and detection and characterisation of plasmids. Results: Eight multidrug-resistant Escherichia coli and two extensively drug-resistant New Delhi metallo-β-lactamases-1 (NDM-1)-producing Enterobacter xiangfangensis ST114 (En. cloacae complex) were isolated from nine of 62 rats. Nine Enterobacteriaceae isolates harboured the blaCTX-M gene and one carried a plasmid-encoded ampC gene (blaCMY-2). Forty-four MRS were isolated from 37 rats; they belonged to seven different staphylococcal species: S. fleuret-tii, S. sciuri, S. aureus, S. pseudintermedius, S. epidermidis, S. haemolyticus (all mecA-positive) and mecC-positive S. xylosus. Conclusion: Our findings suggest that brown rats in cities are a potential source of multidrug-resistant bacteria, including carbapenem-resistant En. xiangfangensis ST114. Considering the increasing worldwide urbanisation, rodent control remains an important priority for health in modern cities. © 2019, European Centre for Disease Prevention and Control (ECDC). All rights reserved.
  • Item
    Structural insights into heme binding to IL-36α proinflammatory cytokine
    (Berlin : Nature Publishing, 2019) Wißbrock, Amelie; Goradia, Nishit; Kumar, Amit; Paul George, Ajay Abisheck; Kühl, Toni; Bellstedt, Peter; Ramachandran, Ramadurai; Hoffmann, Patrick; Galler, Kerstin; Popp, Jürgen; Neugebauer, Ute; Hampel, Kornelia; Zimmermann, Bastian; Adam, Susanne; Wiendl, Maximilian; Krönke, Gerhard; Hamza, Iqbal; Heinemann, Stefan H.; Frey, Silke; Hueber, Axel J.; Ohlenschläger, Oliver; Imhof, Diana
    Cytokines of the interleukin (IL)-1 family regulate immune and inflammatory responses. The recently discovered IL-36 family members are involved in psoriasis, rheumatoid arthritis, and pulmonary diseases. Here, we show that IL-36α interacts with heme thereby contributing to its regulation. Based on in-depth spectroscopic analyses, we describe two heme-binding sites in IL-36α that associate with heme in a pentacoordinated fashion. Solution NMR analysis reveals structural features of IL-36α and its complex with heme. Structural investigation of a truncated IL-36α supports the notion that the N-terminus is necessary for association with its cognate receptor. Consistent with our structural studies, IL-36-mediated signal transduction was negatively regulated by heme in synovial fibroblast-like synoviocytes from rheumatoid arthritis patients. Taken together, our results provide a structural framework for heme-binding proteins and add IL-1 cytokines to the group of potentially heme-regulated proteins.