Search Results

Now showing 1 - 6 of 6
  • Item
    Figures in Scientific Open Access Publications
    (New York, NY : Springer, 2018) Sohmen, Lucia; Charbonnier, Jean; Blümel, Ina; Wartena, Christian; Heller, Lambert; Méndez, E.; Crestani, F.; Ribeiro, C.; David, G.; Lopes, J.
    This paper summarizes the results of a comprehensive statistical analysis on a corpus of open access articles and contained figures. It gives an insight into quantitative relationships between illustrations or types of illustrations, caption lengths, subjects, publishers, author affiliations, article citations and others.
  • Item
    Evaluation of Expert Reports to Quantify the Exploration Risk for Geothermal Projects in Germany
    (Amsterdam [u.a.] : Elsevier, 2015) Ganz, Britta; Ask, Maria; Hangx, Suzanne; Bruckman, Viktor; Kühn, Michael
    The development of deep geothermal energy sources in Germany still faces many uncertainties and high upfront investment costs. Methodical approaches to assess the exploration risk are thus of major importance for geothermal project development. Since 2002, expert reports to quantify the exploration risk for geothermal projects in Germany were carried out. These reports served as a basis for insurance contracts covering the exploration risk. Using data from wells drilled in the meantime, the reports were evaluated and the stated probabilities compared with values actually reached.
  • Item
    Modelling the Surface Heat Flow Distribution in the Area of Brandenburg (Northern Germany)
    (Amsterdam [u.a.] : Elsevier, 2013) Cacace, Mauro; Scheck-Wenderoth, Magdalena; Noack, Vera; Cherubini, Yvonne; Schellschmidt, Rüdiger; Kühn, Michael; Juhlin, Christopher; Held, Hermann; Bruckman, Viktor; Tambach, Tim; Kempka, Thomas
    A lithosphere scale geological model has been used to determine the surface heat flow component due to conductive heat transport for the area of Brandenburg. The modelling results have been constrained by a direct comparison with available heat flow measurements. The calculated heat flow captures the regional trend in the surface heat flow distribution which can be related to existing thermal conductivity variations between the different sedimentary units. An additional advective component due to topography induced regional flow and focused flow within major fault zones should be considered to explain the spatial variation observed in the surface heat flow.
  • Item
    Carrier Lifetime in Liquid-phase Crystallized Silicon on Glass
    (Amsterdam [u.a.] : Elsevier, 2016) Vetter, Michael; Gawlik, Annett; Plentz, Jonathan; Andrä, Gudrun; Ribeyron, Pierre-Jean; Cuevas, Andres; Weeber, Arthur; Ballif, Christophe; Glunz, Stefan; Poortmans, Jef; Brendel, Rolf; Aberle, Armin; Sinton, Ron; Verlinden, Pierre; Hahn, Giso
    Liquid-phase crystallized silicon on glass (LPCSG) presents a promising material to fabricate high quality silicon thin films, e.g. for solar cells and modules. Barrier layers and a doped amorphous silicon layer are deposited on the glass substrate followed by crystallization with a line focus laser beam. In this paper we introduce injection level dependent lifetime measurements generated by the quasi steady-state photoconductance decay method (QSSPC) to characterize LPCSG absorbers. This contactless method allows a determination of the LPCSG absorber quality already at an early stage of solar cell fabrication, and provides a monitoring of the absorber quality during the solar cell fabrication steps. We found minority carrier lifetimes higher than 200ns in our layers (e.g. n-type absorber with ND=2x1015cm-3) indicating a surface recombination velocity SBL<3000cm/s at the barrier layer/Si interface.
  • Item
    Radio Frequency CMOS Chem-bio Viscosity Sensors based on Dielectric Spectroscopy
    ([Setúbal] : SCITEPRESS - Science and Technology Publications, Lda., 2017) Guha, Subhajit; Wenger, Christian; Peixoto, Nathalia; Fred, Ana; Gamboa, Hugo; Vaz, Mário
    This paper presents a CMOS Radio frequency dielectric sensor platform for the detection of relative viscosity changes in a fluid sample. The operating frequency of the sensor is 12.28 GHz. This frequency range has been chosen for high signal to noise ratio and also to avoid other low frequency dispersion mechanisms for future lab on chip applications. The sensor chip has been fabricated in 250 nm BiCMOS technology of IHP. The measurements conducted to show the relative viscosity variation detection capability of the sensor chip, were based on mixtures of glycerol and water as well as glycerol and organic alcohol. The detection limit of viscosity is dependent on the permittivity contrast of the sample constituent. Therefore, it is also shown the choice of frequency inherently aids in the permittivity contrast of the sample constituents.
  • Item
    Adaptive micro axicons for laser applications
    (Les Ulis : EDP Sciences, 2015) Wallrabe, Ulrike; Brunne, Jens; Treffer, Alexander; Grunwald, Ruediger; Bellouard, Yves
    We report on the design, fabrication and testing of novel types of low-dispersion axicons for the adaptive shaping of ultrashort laser pulses. An overview is given on the basic geometries and operating principles of our purely reflective adaptive MEMS-type devices based on thermal or piezoelectric actuation. The flexible formation of nondiffracting beams at pulse durations down to a few oscillations of the optical field enables new applications in optical communication, pulse diagnostics, laser-matter interaction and particle manipulation. As an example, we show first promising results of adaptive autocorrelation. The combination of excellent pulse transfer, self-reconstruction properties and propagation invariance of nondiffracting beams with an adaptive approach promises to extend the field of practical applications significantly.