Search Results

Now showing 1 - 2 of 2
  • Item
    Mechanochemistry-assisted synthesis of hierarchical porous carbons applied as supercapacitors
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017) Leistenschneider, Desirée; Jäckel, Nicolas; Hippauf, Felix; Presser, Volker; Borchardt, Lars
    A solvent-free synthesis of hierarchical porous carbons is conducted by a facile and fast mechanochemical reaction in a ball mill. By means of a mechanochemical ball-milling approach, we obtained titanium(IV) citrate-based polymers, which have been processed via high temperature chlorine treatment to hierarchical porous carbons with a high specific surface area of up to 1814 m2 g−1 and well-defined pore structures. The carbons are applied as electrode materials in electric double-layer capacitors showing high specific capacitances with 98 F g−1 in organic and 138 F g−1 in an ionic liquid electrolyte as well as good rate capabilities, maintaining 87% of the initial capacitance with 1 M TEA-BF4 in acetonitrile (ACN) and 81% at 10 A g−1 in EMIM-BF4.
  • Item
    The role of ligands in coinage-metal nanoparticles for electronics
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2017) Kanelidis, Ioannis; Kraus, Tobias
    Coinage-metal nanoparticles are key components of many printable electronic inks. They can be combined with polymers to form conductive composites and have been used as the basis of molecular electronic devices. This review summarizes the multidimensional role of surface ligands that cover their metal cores. Ligands not only passivate crystal facets and determine growth rates and shapes; they also affect size and colloidal stability. Particle shapes can be tuned via the ligand choice while ligand length, size, ω-functionalities, and chemical nature influence shelf-life and stability of nanoparticles in dispersions. When particles are deposited, ligands affect the electrical properties of the resulting film, the morphology of particle films, and the nature of the interfaces. The effects of the ligands on sintering, cross-linking, and self-assembly of particles in electronic materials are discussed.