Search Results

Now showing 1 - 10 of 40
  • Item
    Effect of nematic ordering on electronic structure of FeSe
    (London : Nature Publishing Group, 2016) Fedorov, A.; Yaresko, A.; Kim, T.K.; Kushnirenko, Y.; Haubold, E.; Wolf, T.; Hoesch, M.; Grüneis, A.; Büchner, B.; Borisenko, S.V.
    Electronically driven nematic order is often considered as an essential ingredient of high-temperature superconductivity. Its elusive nature in iron-based superconductors resulted in a controversy not only as regards its origin but also as to the degree of its influence on the electronic structure even in the simplest representative material FeSe. Here we utilized angle-resolved photoemission spectroscopy and density functional theory calculations to study the influence of the nematic order on the electronic structure of FeSe and determine its exact energy and momentum scales. Our results strongly suggest that the nematicity in FeSe is electronically driven, we resolve the recent controversy and provide the necessary quantitative experimental basis for a successful theory of superconductivity in iron-based materials which takes into account both, spin-orbit interaction and electronic nematicity.
  • Item
    Theoretical approach to resonant inelastic X-ray scattering in iron-based superconductors at the energy scale of the superconducting gap
    (London : Nature Publishing Group, 2016) Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen
    We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing.
  • Item
    Two distinct superconducting phases in LiFeAs
    (London : Nature Publishing Group, 2016) Nag, P.K.; Schlegel, R.; Baumann, D.; Grafe, H.-J.; Beck, R.; Wurmehl, S.; Büchner, B.; Hess, C.
    A non-trivial temperature evolution of superconductivity including a temperature-induced phase transition between two superconducting phases or even a time-reversal symmetry breaking order parameter is in principle expected in multiband superconductors such as iron-pnictides. Here we present scanning tunnelling spectroscopy data of LiFeAs which reveal two distinct superconducting phases: at = 18 K a partial superconducting gap opens, evidenced by subtle, yet clear features in the tunnelling spectra, i.e. particle-hole symmetric coherence peak and dip-hump structures. At Tc = 16 K, these features substantiate dramatically and become characteristic of full superconductivity. Remarkably, the distance between the dip-hump structures and the coherence peaks remains practically constant in the whole temperature regimeT ≤ . This rules out the connection of the dip-hump structures to an antiferromagnetic spin resonance.
  • Item
    Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites
    (London : Nature Publishing Group, 2016) Zhang, L.; Pauly, S.; Tang, M.Q.; Eckert, J.; Zhang, H.F.
    The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated.
  • Item
    Dispersibility of vapor phase oxygen and nitrogen functionalized multi-walled carbon nanotubes in various organic solvents
    (London : Nature Publishing Group, 2016) Khazaee, Maryam; Xia, Wei; Lackner, Gerhard; Mendes, Rafael G.; Rümmeli, Mark; Muhler, Martin; Lupascu, Doru C.
    The synthesis and characterization of gas phase oxygen- and nitrogen-functionalized multi-walled carbon nanotubes (OMWCNTs and NMWCNTs) and the dispersibility of these tubes in organic solvents were investigated. Recently, carbon nanotubes have shown supreme capacity to effectively enhance the efficiency of organic solar cells (OSCs). A critical challenge is to individualize tubes from their bundles in order to provide homogenous nano-domains in the active layer of OSCs. OMWCNTs and NMWCNTs were synthesized via HNO3 vapor and NH3 treatments, respectively. Surface functional groups and the structure of the tubes were analyzed by temperature-programmed desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, and Raman spectroscopy which confirmed the formation of functional groups on the tube surface and the enhancement of surface defects. Elemental analysis demonstrated that the oxygen and nitrogen content increased with increasing treatment time of the multi-walled carbon nanotube (MWCNT) in HNO3 vapor. According to ultra-violet visible spectroscopy, modification of the MWCNT increased the extinction coefficients of the tubes owing to enhanced compatibility of the functionalized tubes with organic matrices.
  • Item
    Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3
    (London : Nature Publishing Group, 2016) Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu
    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general.
  • Item
    Weak-coupling superconductivity in a strongly correlated iron pnictide
    (London : Nature Publishing Group, 2016) Charnukha, A.; Post, K.W.; Thirupathaiah, S.; Pröpper, D.; Wurmehl, S.; Roslova, M.; Morozov, I.; Büchner, B.; Yaresko, A.N.
    Iron-based superconductors have been found to exhibit an intimate interplay of orbital, spin, and lattice degrees of freedom, dramatically affecting their low-energy electronic properties, including superconductivity. Albeit the precise pairing mechanism remains unidentified, several candidate interactions have been suggested to mediate the superconducting pairing, both in the orbital and in the spin channel. Here, we employ optical spectroscopy (OS), angle-resolved photoemission spectroscopy (ARPES), ab initio band-structure, and Eliashberg calculations to show that nearly optimally doped NaFe0.978Co0.022As exhibits some of the strongest orbitally selective electronic correlations in the family of iron pnictides. Unexpectedly, we find that the mass enhancement of itinerant charge carriers in the strongly correlated band is dramatically reduced near the Γ point and attribute this effect to orbital mixing induced by pronounced spin-orbit coupling. Embracing the true band structure allows us to describe all low-energy electronic properties obtained in our experiments with remarkable consistency and demonstrate that superconductivity in this material is rather weak and mediated by spin fluctuations.
  • Item
    Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging
    (London : Nature Publishing Group, 2016) Chernavskaia, Olga; Heuke, Sandro; Vieth, Michael; Friedrich, Oliver; Schürmann, Sebastian; Atreya, Raja; Stallmach, Andreas; Neurath, Markus F.; Waldner, Maximilian; Petersen, Iver; Schmitt, Michael; Bocklitz, Thomas; Popp, Jürgen
    Assessing disease activity is a prerequisite for an adequate treatment of inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis. In addition to endoscopic mucosal healing, histologic remission poses a promising end-point of IBD therapy. However, evaluating histological remission harbors the risk for complications due to the acquisition of biopsies and results in a delay of diagnosis because of tissue processing procedures. In this regard, non-linear multimodal imaging techniques might serve as an unparalleled technique that allows the real-time evaluation of microscopic IBD activity in the endoscopy unit. In this study, tissue sections were investigated using the non-linear multimodal microscopy combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited auto fluorescence (TPEF) and second-harmonic generation (SHG). After the measurement a gold-standard assessment of histological indexes was carried out based on a conventional H&E stain. Subsequently, various geometry and intensity related features were extracted from the multimodal images. An optimized feature set was utilized to predict histological index levels based on a linear classifier. Based on the automated prediction, the diagnosis time interval is decreased. Therefore, non-linear multimodal imaging may provide a real-time diagnosis of IBD activity suited to assist clinical decision making within the endoscopy unit.
  • Item
    Hall-plot of the phase diagram for Ba(Fe1−xCox)2As2
    (London : Nature Publishing Group, 2016) Iida, Kazumasa; Grinenko, Vadim; Kurth, Fritz; Ichinose, Ataru; Tsukada, Ichiro; Ahrens, Eike; Pukenas, Aurimas; Chekhonin, Paul; Skrotzki, Werner; Teresiak, Angelika; Hühne, Ruben; Aswartham, Saicharan; Wurmehl, Sabine; Erbe, Manuela; Hänisch, Jens; Holzapfel, Bernhard; Drechsler, Stefan-Ludwig; Efremov, Dmitri V.
    The Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic. Here, we investigate thin films of Ba(Fe1−xCox)2As2 with compressive and tensile in-plane strain in a wide range of Co doping. Such in-plane strain changes the band structure of the compounds, resulting in various shifts of the whole phase diagram as a function of Co doping. We show that the resultant phase diagrams for different strain states can be mapped onto a single phase diagram with the Hall number. This universal plot is attributed to the critical fluctuations in multiband systems near the antiferromagnetic transition, which may suggest a direct link between magnetic and superconducting properties in the BaFe2As2 system.
  • Item
    A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging
    (London : Nature Publishing Group, 2016) Khafaji, Mona; Vossoughi, Manouchehr; Hormozi-Nezhad, M. Reza; Dinarvand, Rassoul; Börrnert, Felix; Irajizad, Azam
    As a bi-functional cancer treatment agent, a new hybrid nanostructure is presented which can be used for photothermal therapy by exposure to one order of magnitude lower laser powers compared to similar nanostructures in addition to substantial enhancment in magnetic resonance imaging (MRI) contrast. This gold-iron oxide hybrid nanostructure (GIHN) is synthesized by a cost-effective and high yield water-based approach. The GIHN is sheilded by PEG. Therefore, it shows high hemo and biocompatibility and more than six month stability. Alongside earlier nanostructures, the heat generation rate of GIHN is compareable with surfactnat-capped gold nanorods (GNRs). Two reasons are behind this enhancement: Firstly the distance between GNRs and SPIONs is adjusted in a way that the surface plasmon resonance of the new nanostructure is similar to bare GNRs and secondly the fraction of GNRs is raised in the hybrid nanostructure. GIHN is then applied as a photothermal agent using laser irradiation with power as low as 0.5 W.cm−2 and only 32% of human breast adenocarcinoma cells could survive. The GIHN also acts as a dose-dependent transvers relaxation time (T2) MRI contrast agent. The results show that the GINH can be considered as a good candidate for multimodal photothermal therapy and MRI.