Search Results

Now showing 1 - 3 of 3
  • Item
    Liquid sensing: Smart polymer/CNT composites
    (Amsterdam [u.a.] : Elsevier, 2011) Villmow, T.; Pegel, S.; John, A.; Rentenberger, R.; Pötschke, P.
    Today polymer/carbon nanotube (CNT) composites can be found in sports equipment, cars, and electronic devices. The growth of old and new markets in this area has been stimulated by our increased understanding of relevant production and processing methods, as well as the considerable price reduction of industrial CNT grades. In particular, CNT based electrically conductive polymer composites (CPCs) offer a range of opportunities because of their unique property profile; they demonstrate low specific gravity in combination with relatively good mechanical properties and processability. The electrical conductivity of polymer/CNT composites results from a continuous filler network that can be affected by various external stimuli, such as temperature shifts, mechanical deformations, and the presence of gases and vapors or solvents. Accordingly, CNT based CPCs represent promising candidates for the design of smart components capable of integrated monitoring. In this article we focus on their use as leakage detectors for organic solvents.
  • Item
    Polyethylene glycol-modified poly(styrene-co-ethylene/butylene-co-styrene)/carbon nanotubes composite for humidity sensing
    (Lausanne : Frontiers Media, 2019) Mičušík, Matej; Chatzimanolis, Christos; Tabačiarová, Jana; Kollár, Jozef; Kyritsis, Apostolos; Pissis, Polycarpos; Pionteck, Jürgen; Vegso, Karol; Siffalovic, Peter; Majkova, Eva; Omastová, Mária
    Polymeric composites of the linear triblock copolymer poly(styrene-co-ethylene/butylene-co-styrene) grafted with maleic anhydride units (SEBS-MA) or MA modified by hydrophilic polyethylene glycol (PEG) and containing various amounts of multiwall carbon nanotubes (MWCNTs) as conducting filler—were prepared by solvent casting. The MWCNT surface was modified by a non-covalent approach with a pyrene-based surfactant to achieve a homogeneous dispersion of the conducting filler within the polymeric matrix. The dispersion of the unmodified and surfactant-modified MWCNTs within the elastomeric SEBS-MA and SEBS-MA-PEG matrices was characterized by studying the morphology by TEM and SAXS. Dynamical mechanical analysis was used to evaluate the interaction between the MWCNTs and copolymer matrix. The electrical conductivity of the prepared composites was measured by dielectric relaxation spectroscopy, and the percolation threshold was calculated. The prepared elastomeric composites were characterized and studied as humidity sensor. Our results demonstrated that at MWCNTs concentration slightly above the percolation threshold could result in large signal changes. In our system, good results were obtained for MWCNT loading of 2 wt% and an ~0.1 mm thin composite film. The thickness of the tested elastomeric composites and the source current appear to be very important factors that influence the sensing performance. © 2019 Mičušík, Chatzimanolis, Tabačiarová, Kollár, Kyritsis, Pissis, Pionteck, Vegso, Siffalovic, Majkova and Omastová.
  • Item
    Establishment, morphology and properties of carbon nanotube networks in polymer melts
    (Amsterdam [u.a.] : Elsevier, 2012) Alig, I.; Pötschke, P.; Lellinger, D.; Skipa, T.; Pegel, S.; Kasaliwal, G.R.; Villmow, T.
    As for nanofillers in general, the properties of carbon nanotube (CNT) -polymer composites depend strongly on the filler arrangement and the structure of the filler network. This article reviews our actual understanding of the relation between processing conditions, state of CNT dispersion and structure of the filler network on the one hand, and the resulting electrical, melt rheological and mechanical properties, on the other hand. The as-produced rather compact agglomerates of CNTs (initial agglomerates, >1 μm), whose structure can vary for different tube manufacturers, synthesis and/or purification conditions, have first to be well dispersed in the polymer matrix during the mixing step, before they can be arranged to a filler network with defined physical properties by forming secondary agglomerates. Influencing factors on the melt dispersion of initial agglomerates of multi-walled CNTs into individualized tubes are discussed in context of dispersion mechanisms, namely the melt infiltration into initial agglomerates, agglomerate rupture and nanotube erosion from agglomerate surfaces. The hierarchical morphology of filler arrangement resulting from secondary agglomeration processes has been found to be due to a competition of build-up and destruction for the actual melt temperature and the given external flow field forces. Related experimental results from in-line and laboratory experiments and a model approach for description of shear-induced properties are presented.