Search Results

Now showing 1 - 4 of 4
  • Item
    Wireless magnetic-based closed-loop control of self-propelled microjets
    (San Francisco, CA : Public Library of Science, 2014) Khalil, I.S.M.; Magdanz, V.; Sanchez, S.; Schmidt, O.G.; Misra, S.
    In this study, we demonstrate closed-loop motion control of self-propelled microjets under the influence of external magnetic fields. We control the orientation of the microjets using external magnetic torque, whereas the linear motion towards a reference position is accomplished by the thrust and pulling magnetic forces generated by the ejecting oxygen bubbles and field gradients, respectively. The magnetic dipole moment of the microjets is characterized using the U-turn technique, and its average is calculated to be 1.3x10-10 A.m2 at magnetic field and linear velocity of 2 mT and 100 ÎĽm/s, respectively. The characterized magnetic dipole moment is used in the realization of the magnetic force-current map of the microjets. This map in turn is used for the design of a closed-loop control system that does not depend on the exact dynamical model of the microjets and the accurate knowledge of the parameters of the magnetic system. The motion control characteristics in the transient- and steady-states depend on the concentration of the surrounding fluid (hydrogen peroxide solution) and the strength of the applied magnetic field. Our control system allows us to position microjets at an average velocity of 115 ÎĽm/s, and within an average region-of-convergence of 365 ÎĽm.
  • Item
    Polymer Brushes under High Load
    (San Francisco, CA : Public Library of Science, 2013) Balko, S.M.; Kreer, T.; Costanzo, P.J.; Patten, T.E.; Johner, A.; Kuhl, T.L.; Marques, C.M.
    Polymer coatings are frequently used to provide repulsive forces between surfaces in solution. After 25 years of design and study, a quantitative model to explain and predict repulsion under strong compression is still lacking. Here, we combine experiments, simulations, and theory to study polymer coatings under high loads and demonstrate a validated model for the repulsive forces, proposing that this universal behavior can be predicted from the polymer solution properties.
  • Item
    Volume fraction determination of binary liquid mixtures by measurement of the equalization wavelength
    (Basel : MDPI, 2010) Martincek, I.; Pudis, D.; Kacik, D.; Schuster, K.
    A method for determination of the volume fraction in binary liquid mixtures by measurement of the equalization wavelength of intermodal interference of modes LP01 and LP11 in a liquid core optical fiber is presented in this paper. This method was studied using a liquid core optical fiber with fused silica cladding and a core made up of a binary silicon oil/chloroform liquid mixture with different volume fractions of chloroform. The interference technique used allows us to determine the chloroform volume fraction in the binary mixture with accuracy better than 0.1%. One of the most attractive advantages of presented method is very small volume of investigated mixture needed, as only a few hundred picoliters are necessary for reliable results. © 2010 by the authors.
  • Item
    Impact of the precursor chemistry and process conditions on the cell-to-cell variability in 1T-1R based HfO2 RRAM devices
    (London : Nature Publishing Group, 2018) Grossi, A.; Perez, E.; Zambelli, C.; Olivo, P.; Miranda, E.; Roelofs, R.; Woodruff, J.; Raisanen, P.; Li, W.; Givens, M.; Costina, I.; Schubert, M.A.; Wenger, C.
    The Resistive RAM (RRAM) technology is currently in a level of maturity that calls for its integration into CMOS compatible memory arrays. This CMOS integration requires a perfect understanding of the cells performance and reliability in relation to the deposition processes used for their manufacturing. In this paper, the impact of the precursor chemistries and process conditions on the performance of HfO2 based memristive cells is studied. An extensive characterization of HfO2 based 1T1R cells, a comparison of the cell-to-cell variability, and reliability study is performed. The cells’ behaviors during forming, set, and reset operations are monitored in order to relate their features to conductive filament properties and process-induced variability of the switching parameters. The modeling of the high resistance state (HRS) is performed by applying the Quantum-Point Contact model to assess the link between the deposition condition and the precursor chemistry with the resulting physical cells characteristics.