Search Results

Now showing 1 - 10 of 17
  • Item
    Assessment of climate change impacts on water resources in three representative ukrainian catchments using eco-hydrological modelling
    (Basel : MDPI AG, 2017) Didovets, I.; Lobanova, A.; Bronstert, A.; Snizhko, S.; Maule, C.F.; Krysanova, V.
    The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model-Soil and Water Integrated Model (SWIM)-was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.
  • Item
    Climate or land use? - Attribution of changes in river flooding in the Sahel zone
    (Basel : MDPI AG, 2015) Aich, V.; Liersch, S.; Vetter, T.; Andersson, J.C.M.; Müller, E.N.; Hattermann, F.F.
  • Item
    Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets
    (Hoboken, NJ : Blackwell Publishing Ltd, 2017) James, R.; Washington, R.; Schleussner, C.-F.; Rogelj, J.; Conway, D.
    The Paris Agreement long-term global temperature goal refers to two global warming levels: well below 2°C and 1.5°C above preindustrial. Regional climate signals at specific global warming levels, and especially the differences between 1.5°C and 2°C, are not well constrained, however. In particular, methodological challenges related to the assessment of such differences have received limited attention. This article reviews alternative approaches for identifying regional climate signals associated with global temperature limits, and evaluates the extent to which they constitute a sound basis for impacts analysis. Four methods are outlined, including comparing data from different greenhouse gas scenarios, sub-selecting climate models based on global temperature response, pattern scaling, and extracting anomalies at the time of each global temperature increment. These methods have rarely been applied to compare 2°C with 1.5°C, but some demonstrate potential avenues for useful research. Nevertheless, there are methodological challenges associated with the use of existing climate model experiments, which are generally designed to model responses to different levels of greenhouse gas forcing, rather than to model climate responses to a specific level of forcing that targets a given level of global temperature change. Novel approaches may be required to address policy questions, in particular: to differentiate between half degree warming increments while accounting for different sources of uncertainty; to examine mechanisms of regional climate change including the potential for nonlinear responses; and to explore the relevance of time-lagged processes in the climate system and declining emissions, and the resulting sensitivity to alternative mitigation pathways. WIREs Clim Change 2017, 8:e457. doi: 10.1002/wcc.457. For further resources related to this article, please visit the WIREs website.
  • Item
    The challenge to detect and attribute effects of climate change on human and natural systems
    (Dordrecht [u.a.] : Springer, 2013) Stone, D.; Auffhammer, M.; Carey, M.; Hansen, G.; Huggel, C.; Cramer, W.; Lobell, D.; Molau, U.; Solow, A.; Tibig, L.; Yohe, G.
    Anthropogenic climate change has triggered impacts on natural and human systems world-wide, yet the formal scientific method of detection and attribution has been only insufficiently described. Detection and attribution of impacts of climate change is a fundamentally cross-disciplinary issue, involving concepts, terms, and standards spanning the varied requirements of the various disciplines. Key problems for current assessments include the limited availability of long-term observations, the limited knowledge on processes and mechanisms involved in changing environmental systems, and the widely different concepts applied in the scientific literature. In order to facilitate current and future assessments, this paper describes the current conceptual framework of the field and outlines a number of conceptual challenges. Based on this, it proposes workable cross-disciplinary definitions, concepts, and standards. The paper is specifically intended to serve as a baseline for continued development of a consistent cross-disciplinary framework that will facilitate integrated assessment of the detection and attribution of climate change impacts.
  • Item
    Deforestation in Amazonia impacts riverine carbon dynamics
    (München : European Geopyhsical Union, 2016) Langerwisch, Fanny; Walz, Ariane; Rammig, Anja; Tietjen, Britta; Thonicke, Kirsten; Cramer, Wolfgang
    Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90%) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20% (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60% due to deforestation. The discharge of organic carbon to the ocean will be reduced by about 40% under the most severe deforestation and climate change scenario. These changes would have local and regional consequences on the carbon balance and habitat characteristics in the Amazon basin itself as well as in the adjacent Atlantic Ocean.
  • Item
    Comparison of water flows in four European lagoon catchments under a set of future climate scenarios
    (Basel : MDPI AG, 2015) Hesse, C.; Stefanova, A.; Krysanova, V.
  • Item
    Effect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in Poland
    (Basel : MDPI AG, 2017) Marcinkowski, P.; Piniewski, M.; Kardel, I.; Szcześniak, M.; Benestad, R.; Srinivasan, R.; Ignar, S.; Okruszko, T.
    Future climate change is projected to have significant impact on water resources availability and quality in many parts of the world. The objective of this paper is to assess the effect of projected climate change on water quantity and quality in two lowland catchments (the Upper Narew and the Barycz) in Poland in two future periods (near future: 2021-2050, and far future: 2071-2100). The hydrological model SWAT was driven by climate forcing data from an ensemble of nine bias-corrected General Circulation Models-Regional Climate Models (GCM-RCM) runs based on the Coordinated Downscaling Experiment-European Domain (EURO-CORDEX). Hydrological response to climate warming and wetter conditions (particularly in winter and spring) in both catchments includes: lower snowmelt, increased percolation and baseflow and higher runoff. Seasonal differences in the response between catchments can be explained by their properties (e.g., different thermal conditions and soil permeability). Projections suggest only moderate increases in sediment loss, occurring mainly in summer and winter. A sharper increase is projected in both catchments for TN losses, especially in the Barycz catchment characterized by a more intensive agriculture. The signal of change in annual TP losses is blurred by climate model uncertainty in the Barycz catchment, whereas a weak and uncertain increase is projected in the Upper Narew catchment.
  • Item
    Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China
    (Chichester : John Wiley and Sons Ltd, 2013) Wortmann, M.; Krysanova, V.; Kundzewicz, Z.W.; Su, B.; Li, X.
    Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi-distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high-mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two-step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing 'normal' (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance.