Search Results

Now showing 1 - 10 of 18
  • Item
    Unprecedented selective homogeneous cobalt-catalysed reductive alkoxylation of cyclic imides under mild conditions
    (Cambridge : RSC, 2017) Cabrero-Antonino, Jose R.; Adam, Rosa; Papa, Veronica; Holsten, Mattes; Junge, Kathrin; Beller, Matthias
    The first general and efficient non-noble metal-catalysed reductive C2-alkoxylation of cyclic imides (phthalimides and succinimides) is presented. Crucial for the success is the use of [Co(BF4)2·6H2O/triphos (L1)] combination and no external additives are required. Using the optimal cobalt-system, the hydrogenation of the aromatic ring of the parent phthalimide is avoided and only one of the carbonyl groups is selectively functionalized. The resulting products, N- and aryl-ring substituted 3-alkoxy-2,3-dihydro-1H-isoindolin-1-one and N-substituted 3-alkoxy-pyrrolidin-2-one derivatives, are prepared under mild conditions in good to excellent isolated yields. Intramolecular reductive couplings can also be performed affording tricyclic compounds in a one-step process. The present protocol opens the way to the development of new base-metal processes for the straightforward synthesis of functionalized N-heterocyclic compounds of pharmaceutical and biological interest.
  • Item
    Origins of high catalyst loading in copper(i)-catalysed Ullmann-Goldberg C-N coupling reactions
    (Cambridge : RSC, 2017) Sherborne, Grant J.; Adomeit, Sven; Menzel, Robert; Rabeah, Jabor; Brückner, Angelika; Fielding, Mark R.; Willans, Charlotte E.; Nguyen, Bao N.
    A mechanistic investigation of Ullmann-Goldberg reactions using soluble and partially soluble bases led to the identification of various pathways for catalyst deactivation through (i) product inhibition with amine products, (ii) by-product inhibition with inorganic halide salts, and (iii) ligand exchange by soluble carboxylate bases. The reactions using partially soluble inorganic bases showed variable induction periods, which are responsible for the reproducibility issues in these reactions. Surprisingly, more finely milled Cs2CO3 resulted in a longer induction period due to the higher concentration of the deprotonated amine/amide, leading to suppressed catalytic activity. These results have significant implications on future ligand development for the Ullmann-Goldberg reaction and on the solid form of the inorganic base as an important variable with mechanistic ramifications in many catalytic reactions.
  • Item
    Enantio- and diastereoselective synthesis of γ-amino alcohols
    (Cambridge : Soc., 2015) Verkade, Jorge M. M.; Quaedflieg, Peter J. L. M.; Verzijl, Gerard K. M.; Lefort, Laurent; van Delft, Floris L.; de Vries, Johannes G.; Rutjes, Floris P. J. T.
    The γ-amino alcohol structural motif is often encountered in drugs and natural products. We developed two complementary catalytic diastereoselective methods for the synthesis of N-PMP-protected γ-amino alcohols from the corresponding ketones. The anti-products were obtained through Ir-catalyzed asymmetric transfer hydrogenation, the syn-products via Rh-catalyzed asymmetric hydrogenation.
  • Item
    Novel naphthylpyridines from cobalt-catalyzed cyclotrimerization of a chiral diyne
    (Wien [u.a.] : Springer, 2017-11-28) Trommer, Volkmar; Fischer, Fabian; Hapke, Marko
    The concise synthesis of a novel chiral diyne substrate for the assembly of chiral naphthylpyridines was described and different conditions for the cobalt-catalyzed co-cyclotrimerization with nitriles investigated. The products are novel naphthylpyridines possessing configurationally stable biaryl axes.
  • Item
    Naphtalenediimide-based donor-acceptor copolymer prepared by chain-growth catalyst-transfer polycondensation: Evaluation of electron-transporting properties and application in printed polymer transistors
    (London [u.a.] : Royal Society of Chemistry, 2014) Schmidt, G.C.; Höft, D.; Haase, K.; Hübler, A.C.; Karpov, E.; Tkachov, R.; Stamm, M.; Kiriy, A.; Haidu, F.; Zahn, D.R.T.; Yan, H.; Facchetti, A.
    The semiconducting properties of a bithiophene-naphthalene diimide copolymer (PNDIT2) prepared by Ni-catalyzed chain-growth polycondensation (P1) and commercially available N2200 synthesized by Pd-catalyzed step-growth polycondensation were compared. Both polymers show similar electron mobility of ∼0.2 cm2 V-1 s-1, as measured in top-gate OFETs with Au source/drain electrodes. It is noteworthy that the new synthesis has several technological advantages compared to traditional Stille polycondensation, as it proceeds rapidly at room temperature and does not involve toxic tin-based monomers. Furthermore, a step forward to fully printed polymeric devices was achieved. To this end, transistors with PEDOT:PSS source/drain electrodes were fabricated on plastic foils by means of mass printing technologies in a roll-to-roll printing press. Surface treatment of the printed electrodes with PEIE, which reduces the work function of PEDOT:PSS, was essential to lower the threshold voltage and achieve high electron mobility. Fully polymeric P1 and N2200-based OFETs achieved average linear and saturation FET mobilities of >0.08 cm2 V-1 s-1. Hence, the performance of n-type, plastic OFET devices prepared in ambient laboratory conditions approaches those achieved by more sophisticated and expensive technologies, utilizing gold electrodes and time/energy consuming thermal annealing and lithographic steps.
  • Item
    ZnO Nanoparticles Encapsulated in Nitrogen-Doped Carbon Material and Silicalite-1 Composites for Efficient Propane Dehydrogenation
    (Amsterdam [u.a.] : Elsevier, 2019) Zhao, Dan; Li, Yuming; Han, Shanlei; Zhang, Yaoyuan; Jiang, Guiyuan; Wang, Yajun; Guo, Ke; Zhao, Zhen; Xu, Chunming; Li, Ranjia; Yu, Changchun; Zhang, Jian; Ge, Binghui; Kondratenko, Evgenii V.
    Chemistry; Catalysis; Nanoparticles © 2019 The Author(s)Non-oxidative propane dehydrogenation (PDH)is an attractive reaction from both an industrial and a scientific viewpoint because it allows direct large-scale production of propene and fundamental analysis of C-H activation respectively. The main challenges are related to achieving high activity, selectivity, and on-stream stability of environment-friendly and cost-efficient catalysts without non-noble metals. Here, we describe an approach for the preparation of supported ultrasmall ZnO nanoparticles (2–4 nm, ZnO NPs)for high-temperature applications. The approach consists of encapsulation of NPs into a nitrogen-doped carbon (NC)layer in situ grown from zeolitic imidazolate framework-8 on a Silicalite-1 support. The NC layer was established to control the size of ZnO NPs and to hinder their loss to a large extent at high temperatures. The designed catalysts exhibited high activity, selectivity, and on-stream stability in PDH. Propene selectivity of about 90% at 44.4% propane conversion was achieved at 600°C after nearly 6 h on stream. © 2019 The Author(s)
  • Item
    The Exploration of Aroyltrimethylgermane as Potent Synthetic Origins and Their Preparation
    (Amsterdam [u.a.] : Elsevier, 2019) Yuan, Yang; Zhang, Youcan; Chen, Bo; Wu, Xiao-Feng
    The synthetic utilities of acylgermanes are surprisingly rarely explored compared with their analogues. In this communication, the survey of aroyltrimethylgermane as potent synthetic origins has been studied. A variety of novel chemical transformations have been realized, including using the acylgermane group as a directing group in Rh-catalyzed aromatic C-H alkenylation reaction and Ir-catalyzed aromatic C-H amidation reactions. Additionally, a general approach for acylgermanes preparation has been established as well. The catalytic system proceeds effectively in the presence of Pd(OAc)2/BINOL-based monophosphite (L11) and allows for the straightforward access to a wide range of functionalized acylgermanes in high yields. © 2019 The Author(s)Catalysis; Organic Synthesis; Organic Reaction; Chemical Synthesis © 2019 The Author(s)
  • Item
    Nickel-Catalyzed Carbonylative Synthesis of Functionalized Alkyl Iodides
    (Amsterdam : Elsevier B.V., 2018) Peng, J.-B.; Wu, F.-P.; Xu, C.; Qi, X.; Ying, J.; Wu, X.-F.
    Chemistry; Catalysis; Organic Synthesis © 2018 The Author(s)Functionalized alkyl iodides are important compounds in organic chemistry and biology. In this communication, we developed an interesting nickel-catalyzed carbonylative synthesis of functionalized alkyl iodides from aryl iodides and ethers. With Mo(CO)6 as the solid CO source, both cyclic and acyclic ethers were activated, which is also a challenging topic in organic synthesis. Functionalized alkyl iodides were prepared in moderate to excellent yields with outstanding functional group tolerance. Besides the high value of the obtained products, all the atoms from the starting materials were incorporated in the final products and the reaction had high atom efficiency as well.
  • Item
    Poisoning of bubble propelled catalytic micromotors: The chemical environment matters
    (Cambridge [u.a.] : Royal Society of Chemistry, 2013) Zhao, G.; Sanchez, S.; Schmidt, O.G.; Pumera, M.
    Self-propelled catalytic microjets have attracted considerable attention in recent years and these devices have exhibited the ability to move in complex media. The mechanism of propulsion is via the Pt catalysed decomposition of H2O2 and it is understood that the Pt surface is highly susceptible to poisoning by sulphur-containing molecules. Here, we show that important extracellular thiols as well as basic organic molecules can significantly hamper the motion of catalytic microjet engines. This is due to two different mechanisms: (i) molecules such as dimethyl sulfoxide can quench the hydroxyl radicals produced at Pt surfaces and reduce the amount of oxygen gas generated and (ii) molecules containing -SH, -SSR, and -SCH3 moieties can poison the catalytically active platinum surface, inhibiting the motion of the jet engines. It is essential that the presence of such molecules in the environment be taken into consideration for future design and operation of catalytic microjet engines. We show this effect on catalytic micromotors prepared by both rolled-up and electrodeposition approaches, demonstrating that such poisoning is universal for Pt catalyzed micromotors. We believe that our findings will contribute significantly to this field to develop alternative systems or catalysts for self-propulsion when practical applications in the real environment are considered.
  • Item
    Faceting and metal-exchange catalysis in (010) β-Ga2O3 thin films homoepitaxially grown by plasma-assisted molecular beam epitaxy
    (New York : American Institute of Physics, 2018) Mazzolini, P.; Vogt, P.; Schewski, R.; Wouters, C.; Albrecht, M.; Bierwagen, Oliver
    We here present an experimental study on (010)-oriented -Ga2O3 thin films homoepitaxially grown by plasma assisted molecular beam epitaxy. We study the effect of substrate treatments (i.e., O-plasma and Ga-etching) and several deposition parameters (i.e., growth temperature and metal-to-oxygen flux ratio) on the resulting Ga2O3 surface morphology and growth rate. In situ and ex-situ characterizations identified the formation of (110) and (¯110)-facets on the nominally oriented (010) surface induced by the Ga-etching of the substrate and by several growth conditions, suggesting (110) to be a stable (yet unexplored) substrate orientation. Moreover, we demonstrate how metal-exchange catalysis enabled by an additional In-flux significantly increases the growth rate (>threefold increment) of monoclinic Ga2O3 at high growth temperatures, while maintaining a low surface roughness (rms < 0.5 nm) and preventing the incorporation of In into the deposited layer. This study gives important indications for obtaining device-quality thin films and opens up the possibility to enhance the growth rate in -Ga2O3 homoepitaxy on different surfaces [e.g., (100) and (001)] via molecular beam epitaxy.