Search Results

Now showing 1 - 10 of 16
  • Item
    Temporal Role Annotation for Named Entities
    (Amsterdam [u.a.] : Elsevier, 2018) Koutraki, Maria; Bakhshandegan-Moghaddam, Farshad; Sack, Harald; Fensel, Anna; de Boer, Victor; Pellegrini, Tassilo; Kiesling, Elmar; Haslhofer, Bernhard; Hollink, Laura; Schindler, Alexander
    Natural language understanding tasks are key to extracting structured and semantic information from text. One of the most challenging problems in natural language is ambiguity and resolving such ambiguity based on context including temporal information. This paper, focuses on the task of extracting temporal roles from text, e.g. CEO of an organization or head of a state. A temporal role has a domain, which may resolve to different entities depending on the context and especially on temporal information, e.g. CEO of Microsoft in 2000. We focus on the temporal role extraction, as a precursor for temporal role disambiguation. We propose a structured prediction approach based on Conditional Random Fields (CRF) to annotate temporal roles in text and rely on a rich feature set, which extracts syntactic and semantic information from text. We perform an extensive evaluation of our approach based on two datasets. In the first dataset, we extract nearly 400k instances from Wikipedia through distant supervision, whereas in the second dataset, a manually curated ground-truth consisting of 200 instances is extracted from a sample of The New York Times (NYT) articles. Last, the proposed approach is compared against baselines where significant improvements are shown for both datasets.
  • Item
    Survey: Open Science in Higher Education
    (Zenodo, 2017) Heck, Tamara; Blümel, Ina; Heller, Lambert; Mazarakis, Athanasios; Peters, Isabella; Scherp, Ansgar; Weisel, Luzian
    Based on a checklist that was developed during a workshop at OER Camp 2016 and presented as a Science 2.0 conference 2016 poster [1], we conducted an online survey among university teachers representing a sufficient variety of subjects. The survey was online from Feb 6th to March 3rd 2017. We got 360 responses, whereof 210 were completes, see raw data [2]. The poster is presented at Open Science Conference, 21.-22.3.2017, Berlin.
  • Item
    Archivierung und Publikation von Forschungsdaten: Die Rolle von digitalen Repositorien am Beispiel des RADAR-Projekts
    (Berlin : de Gruyter, 2016) Kraft, Angelina; Razum, Matthias; Potthoff, Jan; Porzel, Andrea; Engel, Thomas; Lange, Frank; van den Broek, Karina
    Disziplinübergreifendes Forschungsdatenmanagement für Hochschulbibliotheken und Projekte zu vereinfachen und zu etablieren – das ist das Ziel von RADAR. Im Sommer 2016 geht mit ‚RADAR – Research Data Repository‘ ein Service an den Start, der Forschenden, Institutionen verschiedener Fachdisziplinen und Verlagen eine generische Infrastruktur für die Archivierung und Publikation von Forschungsdaten anbietet. Zu den Dienstleistungen gehören u. a. die Langzeitverfügbarkeit der Daten mit Handle oder Digital Object Identifier (DOI), ein anpassbares Rollen- und Zugriffsrechtemanagement, eine optionale Peer-Review-Funktion und Zugriffsstatistiken. Das Geschäftsmodell ermutigt Forschende, die anfallenden Nutzungsgebühren des Repositoriums in Drittmittelanträge und Datenmanagementpläne zu integrieren. Publizierte Daten stehen als Open Data zur Nachnutzung wie etwa Data Mining, Metadaten-Harvesting und Verknüpfung mit Suchportalen zur Verfügung. Diese Vernetzung ermöglicht ein nachhaltiges Forschungsdatenmanagement und die Etablierung von Dateninfrastrukturen wie RADAR.
  • Item
    Addition of Iridium to the Biopolymer Mediated Synthesis of YBa2Cu3O7 δ
    (Amsterdam [u.a.] : Elsevier, 2012) Wimbush, Stuart C.; Marx, Werner; Barth, Andreas; Hall, Simon R.
    This work represents the first study into the addition of iridium into the solgel synthesis of the high temperature superconductor YBa2Cu3O7δ (Y123). Through a biopolymermediated synthetic approach, the homogeneous nature of the precursor sol and the preferred nucleation and growth of Y123 phases allow for a high yield of superconducting nanoparticles with no suppression of the superconducting critical temperature, even at high levels (40 wt%) of iridium addition. We attribute this to iridium not substituting into the Y123 crystal lattice, instead forming an associate phase.
  • Item
    A comprehensive analysis of the history of DFT based on the bibliometric method RPYS
    (London : BioMed Central, 2019) Haunschild, Robin; Barth, Andreas; French, Bernie
    This bibliometric study aims at providing a comprehensive analysis of the history of density functional theory (DFT) from a perspective of chemistry by using reference publication year spectroscopy (RPYS). 114,138 publications with their 4,412,152 non-distinct cited references are analyzed. The RPYS analysis revealed three different groups of seminal papers which researchers in DFT have drawn from: (i) some long-known experimental studies from the 19th century about physical and chemical phenomena were referenced rather frequently in contemporary DFT publications. (ii) Fundamental quantum-chemical papers from the time period 1900–1950 which predate DFT form another group of seminal papers. (iii) Finally, various very frequently employed DFT approximations, basis sets, and other techniques (e.g., implicit descriptions of solvents) constitute another group of seminal papers. The earliest cited reference we found was published in 1806. The references to papers published in the 19th century mainly served the purpose of referring to long-known physical and chemical phenomena which were used to test if DFT approximations deliver correct results (e.g., Van der Waals interactions). The foundational papers of DFT by Hohenberg and Kohn as well as Kohn and Sham do not seem to be affected by obliteration by incorporation as they appear as pronounced peaks in our RPYS analysis. Since the 1990s, only very few pronounced peaks occur as most years were referenced nearly equally often. Exceptions are 1993 and 1996 due to seminal papers by Axel Becke, John P. Perdew and co-workers, and Georg Kresse and co-workers.
  • Item
    Evolution of DFT studies in view of a scientometric perspective
    (London : BioMed Central, 2016) Haunschild, Robin; Barth, Andreas; Marx, Werner
    Background: This bibliometric study aims to analyze the publications in which density functional theory (DFT) plays a major role. The bibliometric analysis is performed on the full publication volume of 114,138 publications as well as sub-sets defined in terms of six different types of compounds and nine different research topics. Also, a compound analysis is presented that shows how many compounds with specific elements are known to be calculated with DFT. This analysis is done for each element from hydrogen to nobelium. Results: We find that hydrogen, carbon, nitrogen, and oxygen occur most often in compounds calculated with DFT in terms of absolute numbers, but a relative perspective shows that DFT calculations were performed rather often in comparison with experiments for rare gas elements, many actinides, some transition metals, and polonium. Conclusions: The annual publication volume of DFT literature continues to grow steadily. The number of publications doubles approximately every 5-6 years while a doubling of publication volume every 11 years is observed for the CAplus database (14 years if patents are excluded). Calculations of the structure and energy of compounds dominate the DFT literature. © 2016 The Author(s).
  • Item
    The RADAR Project - A Service for Research Data Archival and Publication
    (Basel : MDPI, 2016) Kraft, Angelina; Razum, Matthias; Potthoff, Jan; Porzel, Andrea; Engel, Thomas; Lange, Frank; van den Broek, Karina; Furtado, Filipe
    The aim of the RADAR (Research Data Repository) project is to set up and establish an infrastructure that facilitates research data management: the infrastructure will allow researchers to store, manage, annotate, cite, curate, search and find scientific data in a digital platform available at any time that can be used by multiple (specialized) disciplines. While appropriate and innovative preservation strategies and systems are in place for the big data communities (e.g., environmental sciences, space, and climate), the stewardship for many other disciplines, often called the “long tail research domains”, is uncertain. Funded by the German Research Foundation (DFG), the RADAR collaboration project develops a service oriented infrastructure for the preservation, publication and traceability of (independent) research data. The key aspect of RADAR is the implementation of a two-stage business model for data preservation and publication: clients may preserve research results for up to 15 years and assign well-graded access rights, or to publish data with a DOI assignment for an unlimited period of time. Potential clients include libraries, research institutions, publishers and open platforms that desire an adaptable digital infrastructure to archive and publish data according to their institutional requirements and workflows.
  • Item
    Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features
    (Copenhagen : Munksgaard, 2019) Zagorac, D.; Müller, H.; Ruehl, S.; Zagorac, J.; Rehme, S.
    The Inorganic Crystal Structure Database (ICSD) is the world's largest database of fully evaluated and published crystal structure data, mostly obtained from experimental results. However, the purely experimental approach is no longer the only route to discover new compounds and structures. In the past few decades, numerous computational methods for simulating and predicting structures of inorganic solids have emerged, creating large numbers of theoretical crystal data. In order to take account of these new developments the scope of the ICSD was extended in 2017 to include theoretical structures which are published in peer-reviewed journals. Each theoretical structure has been carefully evaluated, and the resulting CIF has been extended and standardized. Furthermore, a first classification of theoretical data in the ICSD is presented, including additional categories used for comparison of experimental and theoretical information.
  • Item
    Linked Data Supported Content Analysis for Sociology
    (Berlin ; Heidelberg : Springer, 2019) Tietz, Tabea; Sack, Harald; Acosta, Maribel; Cudré-Mauroux, Philippe; Maleshkova, Maria; Pellegrini, Tassilo; Sack, Harald; Sure-Vetter, York
    Philology and hermeneutics as the analysis and interpretation of natural language text in written historical sources are the predecessors of modern content analysis and date back already to antiquity. In empirical social sciences, especially in sociology, content analysis provides valuable insights to social structures and cultural norms of the present and past. With the ever growing amount of text on the web to analyze, also numerous computer-assisted text analysis techniques and tools were developed in sociological research. However, existing methods often go without sufficient standardization. As a consequence, sociological text analysis is lacking transparency, reproducibility and data re-usability. The goal of this paper is to show, how Linked Data principles and Entity Linking techniques can be used to structure, publish and analyze natural language text for sociological research to tackle these shortcomings. This is achieved on the use case of constitutional text documents of the Netherlands from 1884 to 2016 which represent an important contribution to the European cultural heritage. Finally, the generated data is made available and re-usable as Linked Data not only for sociologists, but also for all other researchers in the digital humanities domain interested in the development of constitutions in the Netherlands.
  • Item
    The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
    (London : Nature Publ. Group, 2015) Kirklin, Scott; Saal, James E.; Meredig, Bryce; Thompson, Alex; Doak, Jeff W.; Aykol, Muratahan; Rühl, Stephan; Wolverton, Chris
    The Open Quantum Materials Database (OQMD) is a high-throughput database currently consisting of nearly 300,000 density functional theory (DFT) total energy calculations of compounds from the Inorganic Crystal Structure Database (ICSD) and decorations of commonly occurring crystal structures. To maximise the impact of these data, the entire database is being made available, without restrictions, at www.oqmd.org/download. In this paper, we outline the structure and contents of the database, and then use it to evaluate the accuracy of the calculations therein by comparing DFT predictions with experimental measurements for the stability of all elemental ground-state structures and 1,670 experimental formation energies of compounds. This represents the largest comparison between DFT and experimental formation energies to date. The apparent mean absolute error between experimental measurements and our calculations is 0.096 eV/atom. In order to estimate how much error to attribute to the DFT calculations, we also examine deviation between different experimental measurements themselves where multiple sources are available, and find a surprisingly large mean absolute error of 0.082 eV/atom. Hence, we suggest that a significant fraction of the error between DFT and experimental formation energies may be attributed to experimental uncertainties. Finally, we evaluate the stability of compounds in the OQMD (including compounds obtained from the ICSD as well as hypothetical structures), which allows us to predict the existence of ~3,200 new compounds that have not been experimentally characterised and uncover trends in material discovery, based on historical data available within the ICSD.