Search Results

Now showing 1 - 10 of 15
Loading...
Thumbnail Image
Item

Determination of tip transfer function for quantitative MFM using frequency domain filtering and least squares method

2019, Nečas, D., Klapetek, P., Neu, V., Havlíček, M., Puttock, R., Kazakova, O., Hu, X., Zajíčková, L.

Magnetic force microscopy has unsurpassed capabilities in analysis of nanoscale and microscale magnetic samples and devices. Similar to other Scanning Probe Microscopy techniques, quantitative analysis remains a challenge. Despite large theoretical and practical progress in this area, present methods are seldom used due to their complexity and lack of systematic understanding of related uncertainties and recommended best practice. Use of the Tip Transfer Function (TTF) is a key concept in making Magnetic Force Microscopy measurements quantitative. We present a numerical study of several aspects of TTF reconstruction using multilayer samples with perpendicular magnetisation. We address the choice of numerical approach, impact of non-periodicity and windowing, suitable conventions for data normalisation and units, criteria for choice of regularisation parameter and experimental effects observed in real measurements. We present a simple regularisation parameter selection method based on TTF width and verify this approach via numerical experiments. Examples of TTF estimation are shown on both 2D and 3D experimental datasets. We give recommendations on best practices for robust TTF estimation, including the choice of windowing function, measurement strategy and dealing with experimental error sources. A method for synthetic MFM data generation, suitable for large scale numerical experiments is also presented.

Loading...
Thumbnail Image
Item

Optimizing mechanical properties of Fe26.7Co26.7Ni26.7Si8.9B11 high entropy alloy by inducing hypoeutectic to quasi-duplex microstructural transition

2019, Zhang, Z.-Q., Song, K.-K., Guo, S., Xue, Q.-S., Xing, H., Cao, C.-D., Dai, F.-P., Völker, B., Hohenwarter, A., Maity, T., Chawake, N., Kim, J.-T., Wang, L., Kaban, I., Eckert, J.

High-entropy alloys (HEAs) have inspired considerable interest due to their attractive physical and mechanical properties. In this work, the microstructural evolution induced by different heat treatments on rapidly solidified hypoeutectic precursors of a Fe26.7Co26.7Ni26.7Si8.9B11 HEA is investigated and correlated with the corresponding mechanical properties. The microstructures of the rapidly solidified precursors are composed of primary fcc solid solution dendrites embedded in a eutectic matrix. When the samples are annealed at different temperatures after furnace cooling or quenching, respectively, the eutectic structure gradually decomposes into fcc, tetragonal (Fe,Co)2B, and hexagonal Ni31Si12 crystals with increasing annealing temperature, leading to a gradual increase of the content of the fcc crystals and both their aggregation and coarsening. Then the dominant structural framework gradually transforms from eutectic structures to fcc dendrites and ultimately the (Fe,Co)2B crystals become isolated as dominant reinforcement particles distributed in the interdendritic regions. This gradual microstructural transition from hypoeutectic to quasi-duplex structures leads to the change of the dominant deformation mechanism from crack-controlled to dislocation-dominated deformation, which allows to control both ductility and strength in a wide range. Hence, this study provides some guideline for how to tune the microstructure and mechanical properties of HEAs.

Loading...
Thumbnail Image
Item

Biomimetic light dilution using side-emitting optical fiber for enhancing the productivity of microalgae reactors

2019, Wondraczek, Lothar, Gründler, Alexander, Reupert, Aaron, Wondraczek, Katrin, Schmidt, Markus A., Pohnert, Georg, Nolte, Stephan

Photoautotrophic microbes present vast opportunities for sustainable lipid production, CO2 storage and green chemistry, for example, using microalgae beds to generate biofuels. A major challenge of microalgae cultivation and other photochemical reactors is the efficiency of light delivery. In order to break even on large scale, dedicated photon management will be required across all levels of reactor hierarchy – from the harvesting of light and its efficient injection and distribution inside of the reactor to the design of optical antenna and pathways of energy transfer on molecular scale. Here, we discuss a biomimetic approach for light dilution which enables homogeneous illumination of large reactor volumes with high optical density. We show that the immersion of side-emitting optical fiber within the reactor can enhance the fraction of illuminated volume by more than two orders of magnitude already at cell densities as low as ~5 104ml−1. Using the green algae Haematococcus pluvialis as a model system, we demonstrate an increase in the rate of reproduction by up to 93%. Beyond micoralgae, the versatile properties of side-emitting fiber enable the injection and dilution of light with tailored spectral and temporal characteristics into virtually any reactor containment.

Loading...
Thumbnail Image
Item

Tailoring optical properties and stimulated emission in nanostructured polythiophene

2019, Portone, Alberto, Ganzer, Lucia, Branchi, Federico, Ramos, Rodrigo, Caldas, Marília J., Pisignano, Dario, Molinari, Elisa, Cerullo, Giulio, Persano, Luana, Prezzi, Deborah, Virgili, Tersilla

Polythiophenes are the most widely utilized semiconducting polymers in organic electronics, but they are scarcely exploited in photonics due to their high photo-induced absorption caused by interchain polaron pairs, which prevents the establishment of a window of net optical gain. Here we study the photophysics of poly(3-hexylthiophene) configured with different degrees of supramolecular ordering, spin-coated thin films and templated nanowires, and find marked differences in their optical properties. Transient absorption measurements evidence a partially-polarized stimulated emission band in the nanowire samples, in contrast with the photo-induced absorption band observed in spin-coated thin films. In combination with theoretical modeling, our experimental results reveal the origin of the primary photoexcitations dominating the dynamics for different supramolecular ordering, with singlet excitons in the nanostructured samples superseding the presence of polaron pairs, which are present in the disordered films. Our approach demonstrates a viable strategy to direct optical properties through structural control, and the observation of optical gain opens the possibility to the use of polythiophene nanostructures as building blocks of organic optical amplifiers and active photonic devices. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Converse Magnetoelectric Composite Resonator for Sensing Small Magnetic Fields

2019, Hayes, P., Jovičević Klug, M., Toxværd, S., Durdaut, P., Schell, V., Teplyuk, A., Burdin, D., Winkler, A., Weser, R., Fetisov, Y., Höft, M., Knöchel, R., McCord, J., Quandt, E.

Magnetoelectric (ME) thin film composites consisting of sputtered piezoelectric (PE) and magnetostrictive (MS) layers enable for measurements of magnetic fields passively, i.e. an AC magnetic field directly generates an ME voltage by mechanical coupling of the MS deformation to the PE phase. In order to achieve high field sensitivities a magnetic bias field is necessary to operate at the maximum piezomagnetic coefficient of the MS phase, harnessing mechanical resonances further enhances this direct ME effect size. Despite being able to detect very small AC field amplitudes, exploiting mechanical resonances directly, implies a limitation to available signal bandwidth along with the inherent inability to detect DC or very low frequency magnetic fields. The presented work demonstrates converse ME modulation of thin film Si cantilever composites of mesoscopic dimensions (25 mm × 2.45 mm × 0.35 mm), employing piezoelectric AlN and magnetostrictive FeCoSiB films of 2 µm thickness each. A high frequency mechanical resonance at about 515 kHz leads to strong induced voltages in a surrounding pickup coil with matched self-resonance, leading to field sensitivities up to 64 kV/T. A DC limit of detection of 210 pT/Hz1/2 as well as about 70 pT/Hz1/2 at 10 Hz, without the need for a magnetic bias field, pave the way towards biomagnetic applications.

Loading...
Thumbnail Image
Item

Laser sintering of gravure printed indium tin oxide films on polyethylene terephthalate for flexible electronics

2019, Serkov, A.A., Snelling, H.V., Heusing, S., Amaral, T.M.

Tin doped indium oxide (ITO) thin films provide excellent transparency and conductivity for electrodes in displays and photovoltaic systems. Current advances in producing printable ITO inks are reducing the volume of wasted indium during thin film patterning. However, their applicability to flexible electronics is hindered by the need for high temperature processing that results in damage to conventional polymer substrates. Here, we detail the conditions under which laser heating can be used as a replacement for oven and furnace treatments. Measurements of the optical properties of both the printed ITO film and the polymer substrate (polyethylene terephthalate, PET) identify that in the 1.5–2.0 μm wavelength band there is absorption in the ITO film but good transparency in PET. Hence, laser light that is not absorbed in the film does not go on to add a deleterious energy loading to the substrate. Localization of the energy deposition in the film is further enhanced by using ultrashort laser pulses (~1 ps) thus limiting heat flow during the interaction. Under these conditions, laser processing of the printed ITO films results in an improvement of the conductivity without damage to the PET. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Combining magnetic forces for contactless manipulation of fluids in microelectrode-microfluidic systems

2019, Haehnel, V., Khan, F.Z., Mutschke, G., Cierpka, C., Uhlemann, M., Fritsch, I.

A novel method to drive and manipulate fluid in a contactless way in a microelectrode-microfluidic system is demonstrated by combining the Lorentz and magnetic field gradient forces. The method is based on the redox-reaction [Fe(CN) 6 ] 3− /[Fe(CN) 6 ] 4− performed in a magnetic field oriented perpendicular to the ionic current that crosses the gap between two arrays of oppositely polarized microelectrodes, generating a magnetohydrodynamic flow. Additionally, a movable magnetized CoFe micro-strip is placed at different positions beneath the gap. In this region, the magnetic flux density is changed locally and a strong magnetic field gradient is formed. The redox-reaction changes the magnetic susceptibility of the electrolyte near the electrodes, and the resulting magnetic field gradient exerts a force on the fluid, which leads to a deflection of the Lorentz force-driven main flow. Particle Image Velocity measurements and numerical simulations demonstrate that by combining the two magnetic forces, the flow is not only redirected, but also a local change of concentration of paramagnetic species is realized.

Loading...
Thumbnail Image
Item

Superlattice in collapsed graphene wrinkles

2019, Verhagen, Timotheus, Pacakova, Barbara, Bousa, Milan, Hübner, Uwe, Kalbac, Martin, Vejpravova, Jana, Frank, Otakar

Topographic corrugations, such as wrinkles, are known to introduce diverse physical phenomena that can significantly modify the electrical, optical and chemical properties of two-dimensional materials. This range of assets can be expanded even further when the crystal lattices of the walls of the wrinkle are aligned and form a superlattice, thereby creating a high aspect ratio analogue of a twisted bilayer or multilayer – the so-called twisted wrinkle. Here we present an experimental proof that such twisted wrinkles exist in graphene monolayers on the scale of several micrometres. Combining atomic force microscopy and Raman spectral mapping using a wide range of visible excitation energies, we show that the wrinkles are extremely narrow and their Raman spectra exhibit all the characteristic features of twisted bilayer or multilayer graphene. In light of a recent breakthrough – the superconductivity of a magic-angle graphene bilayer, the collapsed wrinkles represent naturally occurring systems with tuneable collective regimes.

Loading...
Thumbnail Image
Item

Mathematical modeling of drug-induced receptor internalization in the HER2-positive SKBR3 breast cancer cell-line

2019, Fehling-Kaschek, M., Peckys, D.B., Kaschek, D., Timmer, J., Jonge, N.

About 20% of breast cancer tumors over-express the HER2 receptor. Trastuzumab, an approved drug to treat this type of breast cancer, is a monoclonal antibody directly binding at the HER2 receptor and ultimately inhibiting cancer cell growth. The goal of our study was to understand the early impact of trastuzumab on HER2 internalization and recycling in the HER2-overexpressing breast cancer cell line SKBR3. To this end, fluorescence microscopy, monitoring the amount of HER2 expression in the plasma membrane, was combined with mathematical modeling to derive the flux of HER2 receptors from and to the membrane. We constructed a dynamic multi-compartment model based on ordinary differential equations. To account for cancer cell heterogeneity, a first, dynamic model was expanded to a second model including two distinct cell phenotypes, with implications for different conformational states of HER2, i.e. monomeric or homodimeric. Our mathematical model shows that the hypothesis of fast constitutive HER2 recycling back to the plasma membrane does not match the experimental data. It conclusively describes the experimental observation that trastuzumab induces sustained receptor internalization in cells with membrane ruffles. It is also concluded that for rare, non-ruffled (flat) cells, HER2 internalization occurs three orders of magnitude slower than for the bulk, ruffled cell population. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

Triplet superconductivity in coupled odd-gon rings

2019, Reja, S., Nishimoto, S.

Shedding light on the nature of spin-triplet superconductivity has been a long-standing quest in condensed matter physics since the discovery of superfluidity in liquid 3 He. Nevertheless, the mechanism of spin-triplet pairing is much less understood than that of spin-singlet pairing explained by the Bardeen-Cooper-Schrieffer theory or even observed in high-temperature superconductors. Here we propose a versatile mechanism for spin-triplet superconductivity which emerges through a melting of macroscopic spin polarization stabilized in weakly coupled odd-gon (e.g., triangle, pentagon, etc) systems. We demonstrate the feasibility of sustaining spin-triplet superconductivity with this mechanism by considering a new class of quasi-one-dimensional superconductors A 2 Cr 3 As 3 (A = K, Rb, and Cs). Furthermore, we suggest a simple effective model to easily illustrate the adaptability of the mechanism to general systems consisting of odd-gon units. This mechanism provides a rare example of superconductivity from on-site Coulomb repulsion.