Search Results

Now showing 1 - 2 of 2
  • Item
    Bidirectional and Stretchable Piezoresistive Sensors Enabled by Multimaterial 3D Printing of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites
    (Basel : MDPI, 2018-12-21) Christ, Josef F.; Aliheidari, Nahal; Pötschke, Petra; Ameli, Amir
    Fabricating complex sensor platforms is still a challenge because conventional sensors are discrete, directional, and often not integrated within the system at the material level. Here, we report a facile method to fabricate bidirectional strain sensors through the integration of multiwalled carbon nanotubes (MWCNT) and multimaterial additive manufacturing. Thermoplastic polyurethane (TPU)/MWCNT filaments were first made using a two-step extrusion process. TPU as the platform and TPU/MWCNT as the conducting traces were then 3D printed in tandem using multimaterial fused filament fabrication to generate uniaxial and biaxial sensors with several conductive pattern designs. The sensors were subjected to a series of cyclic strain loads. The results revealed excellent piezoresistive responses with cyclic repeatability in both the axial and transverse directions and in response to strains as high as 50%. It was shown that the directional sensitivity could be tailored by the type of pattern design. A wearable glove, with built-in sensors, capable of measuring finger flexure was also successfully demonstrated where the sensors are an integral part of the system. These sensors have potential applications in wearable electronics, soft robotics, and prosthetics, where complex design, multi-directionality, embedding, and customizability are demanded.
  • Item
    Printability study of metal ion crosslinked PEG-catechol based inks
    (Cold Spring Harbor : Cold Spring Harbor Laboratory, 2019) Włodarczyk-Biegun, Malgorzata K.; Paez, Julieta I.; Villiou, Maria; Feng, Jun; del Campo, Aranzazu
    Inspired by reversible networks present in nature, we have explored the printability of catechol functionalized polyethylene glycol (PEG) based inks with metal-coordination crosslinking. Material formulations containing Al3+, Fe3+ or V3+ as crosslinking ions were tested. The printability and shape fidelity were dependent on the ink composition (metal ion type, pH, PEG molecular weight) and printing parameters (extrusion pressure and printing speed). The relaxation time, recovery rate and viscosity of the inks were analyzed in rheology studies and correlated with thermodynamic and ligand exchange kinetic constants of the dynamic bonds and the printing performance (i.e. shape fidelity of the printed structures). The relevance of the relaxation time and ligand exchange kinetics for printability was demonstrated. Cells seeded on the crosslinked materials were viable, indicating the potential of the formulations to be used as inks for cell encapsulation. The proposed dynamic ink design offers significant flexibility for 3D (bio)printing, and enables straightforward adjustment of the printable formulation to meet application-specific needs.