Search Results

Now showing 1 - 6 of 6
  • Item
    Crystal structure of samarium-strontium-calcium orthoaluminotantalate, (Sm0.40Sr0.50Ca0.10)(Al0.70Ta 0.30)O3
    (Berlin : de Gruyter, 2010) Gesing, T.M.; Uecker, R.; Zheng, W.; Buhl, J.-C.
    Al2.90Ca0.45O12Sm 1.59Sr2Ta1.10, tetragonal, I4 (no. 82), a = 5.4174(8) Å, c = 7.643(2) Å, V = 224.3 Å3, Z = 1, Rgt(F) = 0.039, wRref(F 2) = 0.1258 , T = 298 K. © 2014 Oldenbourg Wissenschaftsverlag, München.
  • Item
    Ba3YRu0.73(2)Al1.27(2)O8 and Ba5Y2Ru1.52(2)Al1.47(2)O 13.5: New perovskite ruthenates with partial octahedra replacement
    (Berlin : de Gruyter, 2014) Schüpp-Niewa, Barbara; Shlyk, Larysa; Prots, Yurii; Krabbes, Gernot; Niewa, Rainer
    Dark red single crystals of the new phases Ba3YRu0.73(2)Al1.27(2)O8 and Ba5Y2Ru1.52(2)Al1.47(2)O13.5 have been grown from powder mixtures of BaCO3, Y2O3, Al2O3, and RuO2 . The compositions given in the formulas result from the refinements of the crystal structures based on single crystal X-ray diffraction data (hexagonal P63/mmc (No. 194), Z = 2, Ba3 YRu0.73(2)Al1.27(2)O8: a = 5.871(1), c = 14.633(3) Å , R1 = 0.035, wR2 = 0.069 and Ba5Y2Ru1.52(2)Al1.47(2)O13.5: a = 5.907(1), c = 24.556(5) Å, R1 = 0.057, wR2 = 0.114). Ba3YRu0.73(2)Al1.27(2)O8 crystallizes in a 6H perovskite structure, Ba5Y2Ru1.52(2)Al1.47(2)O13.5 has been characterized as a 10H Perovskite. Due to similar spatial extensions of (Ru2O9) facesharing pairs of octahedra and (Al2O7) vertex-sharing pairs of tetrahedra, both structures show partial mutual substitution of these units. Consequently, the title compounds may be written as Ba3Y(Ru2O9)1−x(Al2O7)x, x = 0.64(1) and Ba5Y2RuO6(Ru2O9)1−x(Al2O7)x, x = 0.74(1). This interpretation is supported by the results of electron probe microanalysis using wavelength-dispersive X-ray spectroscopy. An oxidation state of Ru close to +5 for the (Ru2O9) units, as can be derived from the distances d(Ru-Ru), additionally leads to similar charges of both the (Ru2O9) and the (Al2O7) units.
  • Item
    Crystal structure of bis(pentamethylcyclopentadienyl)-(4,4′-di-tert- butylbipyridyl)hafnium(IV)-hexane (1:0.5), Hf(C10H15) 2(C18H24N2) · 0.5C 6H14
    (Berlin : de Gruyter, 2010) Beweries, T.; Spannenberg, A.; Rosenthal, U.
    C41H61HfN2, monoclinic, P21/n (no. 14), a = 13.4410(4) Å, b = 13.9983(6) Å, c = 21.1996(8) Å, β = 98.144(3)°, V = 3948.5 Å3, Z = 4, Rgt(F) = 0.051, wRref(F2) = 0.121,T = 200 K. © 2014 Oldenbourg Wissenschaftsverlag, München.
  • Item
    Crystal structure of 1-bis(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl) cyclopentadienyl)-1-trimethylphosphine-2,3-bis(trimethylsilyl) -1-hafnacycloprop-2-ene-hexane (1:0.5), (HfC8H18Si 2)(C15H22)2(PC3H 9) · 0.5C6H14
    (Berlin : de Gruyter, 2010) Klahn, M.; Spannenberg, A.; Rosenthal, U.
    C44H78HfPSi2, tetragonal, P4 1212 (no. 92), a = 14.9634(2) Å, c = 44.9270(8) Å, V = 10059.3 Å3, Z = 8, Rgt(F) = 0.026, wRref(F2) = 0.073, T = 200 K. © by Oldenbourg Wissenschaftsverlag, München.
  • Item
    Species-specific shells: chitin synthases and cell mechanics in molluscs
    (Berlin : de Gruyter, 2012) Weiss, Ingrid M.
    The size, morphology and species-specific texture of mollusc shell biominerals is one of the unresolved questions in nature. In search of molecular control principles, chitin has been identified by Weiner and Traub (FEBS Lett. 1980, 111:311–316) as one of the organic compounds with a defined co-organization with mineral phases. Chitin fibers can be aligned with certain mineralogical axes of crystalline calcium carbonate in a species-specific manner. These original observations motivated the functional characterization of chitin forming enzymes in molluscs. The full-length cDNA cloning of mollusc chitin synthases identified unique myosin domains as part of the biological control system. The potential impact of molecular motors and other conserved domains of these complex transmembrane enzymes on the evolution of shell biomineralization is investigated and discussed in this article. The size, morphology and species-specific texture of mollusc shell biominerals is one of the unresolved questions in nature. In search of molecular control principles, chitin has been identified by Weiner and Traub (FEBS Lett. 1980, 111:311–316) as one of the organic compounds with a defined co-organization with mineral phases. Chitin fibers can be aligned with certain mineralogical axes of crystalline calcium carbonate in a species-specific manner. These original observations motivated the functional characterization of chitin forming enzymes in molluscs. The full-length cDNA cloning of mollusc chitin synthases identified unique myosin domains as part of the biological control system. The potential impact of molecular motors and other conserved domains of these complex transmembrane enzymes on the evolution of shell biomineralization is investigated and discussed in this article. Read More: http://www.oldenbourg-link.com/doi/abs/10.1524/zkri.2012.1530
  • Item
    Crystal structure of bis(pentamethylcyclopentadienyl)(1-tert- butylisocyanido)-2-trimethylsilyl-3-[(trimethylsilyl)ethynyl]-hafnacyclopropene, (C10H15)2(C5H9N) Hf(C10H18Si2)
    (Berlin : de Gruyter, 2010) Beweries, T.; Spannenberg, A.; Rosenthal, U.
    C35H57HfNSi2, monoclinic, P121/c1 (no. 14), a = 10.7410(3) Å, b = 16.2302(5) Å, c = 21.6945(7) Å, β = 104.512(2)°, V = 3661.3 Å3, Z = 4, R gt(F) = 0.049, wRref(F2) = 0.138, T = 200 K. © 2014 Oldenbourg Wissenschaftsverlag, München.