Search Results

Now showing 1 - 2 of 2
  • Item
    Selective reductive amination of aldehydes from nitro compounds catalyzed by molybdenum sulfide clusters
    (Cambridge : RSC, 2017) Pedrajas, E.; Sorribes, I.; Junge, K.; Beller, M.; Llusar, R.
    Secondary amines are selectively obtained from low value starting materials using hydrogen and a non-noble metal-based catalyst. The reductive amination of aldehydes from nitroarenes or nitroalkanes is efficiently catalyzed by a well-defined diamino molybdenum sulfide cluster in a one-pot homogeneous reaction. The integrity of the molecular cluster catalyst is preserved along the process.
  • Item
    Homogeneous cobalt-catalyzed reductive amination for synthesis of functionalized primary amines
    ([London] : Nature Publishing Group UK, 2019) Murugesan, Kathiravan; Wei, Zhihong; Chandrashekhar, Vishwas G.; Neumann, Helfried; Spannenberg, Anke; Jiao, Haijun; Beller, Matthias; Jagadeesh, Rajenahally V.
    The development of earth abundant 3d metal-based catalysts continues to be an important goal of chemical research. In particular, the design of base metal complexes for reductive amination to produce primary amines remains as challenging. Here, we report the combination of cobalt and linear-triphos (bis(2-diphenylphosphinoethyl)phenylphosphine) as the molecularly-defined non-noble metal catalyst for the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds, gaseous ammonia and hydrogen in good to excellent yields. Noteworthy, this cobalt catalyst exhibits high selectivity and as a result the -NH2 moiety is introduced in functionalized and structurally diverse molecules. An inner-sphere mechanism on the basis of the mono-cationic [triphos-CoH]+ complex as active catalyst is proposed and supported with density functional theory computation on the doublet state potential free energy surface and H2 metathesis is found as the rate-determining step.