Search Results

Now showing 1 - 10 of 16
  • Item
    Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes
    (Weinheim : Wiley-VCH, 2017-9-13) Jarvis, Amanda G.; Obrecht, Lorenz; Deuss, Peter J.; Laan, Wouter; Gibson, Emma K.; Wells, Peter P.; Kamer, Paul C. J.
    Artificial metalloenzymes (ArMs) are hybrid catalysts that offer a unique opportunity to combine the superior performance of natural protein structures with the unnatural reactivity of transition-metal catalytic centers. Therefore, they provide the prospect of highly selective and active catalytic chemical conversions for which natural enzymes are unavailable. Herein, we show how by rationally combining robust site-specific phosphine bioconjugation methods and a lipid-binding protein (SCP-2L), an artificial rhodium hydroformylase was developed that displays remarkable activities and selectivities for the biphasic production of long-chain linear aldehydes under benign aqueous conditions. Overall, this study demonstrates that judiciously chosen protein-binding scaffolds can be adapted to obtain metalloenzymes that provide the reactivity of the introduced metal center combined with specifically intended product selectivity.
  • Item
    A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol
    (Weinheim : Wiley-VCH, 2016-12-2) Andérez-Fernández, María; Vogt, Lydia K.; Fischer, Steffen; Zhou, Wei; Jiao, Haijun; Garbe, Marcel; Elangovan, Saravanakumar; Junge, Kathrin; Junge, Henrik; Ludwig, Ralf; Beller, Matthias
    For the first time, structurally defined manganese pincer complexes catalyze the dehydrogenation of aqueous methanol to hydrogen and carbon dioxide, which is a transformation of interest with regard to the implementation of a hydrogen and methanol economy. Excellent long-term stability was demonstrated for the Mn-PNPiPr catalyst, as a turnover of more than 20 000 was reached. In addition to methanol, other important hydrogen carriers were also successfully dehydrogenated.
  • Item
    Hydrogen Bonding Between Ions of Like Charge in Ionic Liquids Characterized by NMR Deuteron Quadrupole Coupling Constants—Comparison with Salt Bridges and Molecular Systems
    (Weinheim : Wiley-VCH, 2019) Khudozhitkov, Alexander E.; Neumann, Jan; Niemann, Thomas; Zaitsau, Dzmitry; Stange, Peter; Paschek, Dietmar; Stepanov, Alexander G.; Kolokolov, Daniil I.; Ludwig, Ralf
    We present deuteron quadrupole coupling constants (DQCC) for hydroxyl-functionalized ionic liquids (ILs) in the crystalline or glassy states characterizing two types of hydrogen bonding: The regular Coulomb-enhanced hydrogen bonds between cation and anion (c–a), and the unusual hydrogen bonds between cation and cation (c–c), which are present despite repulsive Coulomb forces. We measure these sensitive probes of hydrogen bonding by means of solid-state NMR spectroscopy. The DQCCs of (c–a) ion pairs and (c–c) H-bonds are compared to those of salt bridges in supramolecular complexes and those present in molecular liquids. At low temperatures, the (c–c) species successfully compete with the (c–a) ion pairs and dominate the cluster populations. Equilibrium constants obtained from molecular-dynamics (MD) simulations show van't Hoff behavior with small transition enthalpies between the differently H-bonded species. We show that cationic-cluster formation prevents these ILs from crystallizing. With cooling, the (c–c) hydrogen bonds persist, resulting in supercooling and glass formation. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Synthesis of β-Hydroxysulfides from Thiophenols and Disulfides with tert-Butyl Hydroperoxide as the Oxidant and Reactant
    (Weinheim : Wiley-VCH, 2016) Feng, Jian-Bo; Wu, Xiao-Feng
    A procedure for the oxidative synthesis of β-hydroxysulfides is reported, in which thiophenols or diaryl disulfides are reacted with tert-butyl hydroperoxide (TBHP). In the presence of zinc iodide or potassium iodide, with TBHP as the oxidant and pre-reactant, thiophenols and diaryl disulfides react with the methyl group of tBuOH smoothly and selectivity to give the corresponding 2-methyl-1-(arylthio)propan-2-ols as the terminal products in moderate to good yields.
  • Item
    Hydrogenation of Polyesters to Polyether Polyols
    (Weinheim : Wiley-VCH, 2019) Stadler, Bernhard M.; Hinze, Sandra; Tin, Sergey; de Vries, Johannes G.
    The amount of plastic waste is continuously increasing. Besides conventional recycling, one solution to deal with this problem could be to use this waste as a resource for novel materials. In this study, polyesters are hydrogenated to give polyether polyols by using in situ-generated Ru-Triphos catalysts in combination with Lewis acids. The choice of Lewis acid and its concentration relative to the ruthenium catalyst are found to determine the selectivity of the reaction. Monitoring of the molecular weight during the reaction confirms a sequential mechanism in which the diols that are formed by hydrogenation are etherified to the polyethers. To probe the applicability of this tandem hydrogenation etherification approach, a range of polyester substrates is investigated. The oligoether products that form in these reactions have the chain lengths that are appropriate for application in the adhesives and coatings industries. This strategy makes polyether polyols accessible that are otherwise difficult to obtain from conventional fossil-based feedstocks. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Spectroscopic Evidence for Clusters of Like-Charged Ions in Ionic Liquids Stabilized by Cooperative Hydrogen Bonding
    (Weinheim : Wiley-VCH, 2016) Knorr, Anne; Stange, Peter; Fumino, Koichi; Weinhold, Frank; Ludwig, Ralf
    Infrared spectroscopy and density functional theory calculations provide strong evidence for the formation of clusters of like-charged ions in ionic liquids. With decreasing temperature, cooperative hydrogen bonding overcomes repulsive electrostatic interaction. The resulting cyclic tetramers nicely resemble well-known molecular clusters of alcohols.
  • Item
    Cobalt-Catalyzed Aqueous Dehydrogenation of Formic Acid
    (Weinheim : Wiley-VCH, 2019) Zhou, Wei; Wei, Zhihong; Spannenberg, Anke; Jiao, Haijun; Junge, Kathrin; Junge, Henrik; Beller, Matthias
    Among the known liquid organic hydrogen carriers, formic acid attracts increasing interest in the context of safe and reversible storage of hydrogen. Here, the first molecularly defined cobalt pincer complex is disclosed for the dehydrogenation of formic acid in aqueous medium under mild conditions. Crucial for catalytic activity is the use of the specific complex 3. Compared to related ruthenium and manganese complexes 7 and 8, this optimal cobalt complex showed improved performance. DFT computations support an innocent non-classical bifunctional outer-sphere mechanism on the triplet state potential energy surface. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    A Systematic Survey of the Reactivity of Chlorinated N2P2, NP3 and P4 Ring Systems
    (Weinheim : Wiley-VCH, 2019) Bresien, Jonas; Eickhoff, Liesa; Schulz, Axel; Suhrbier, Tim; Villinger, Alexander
    The reactivity of the four-membered NP3 ring system [RN(μ-PCl)2PR] (R=Mes*=2,4,6-tri-tert-butylphenyl) towards Lewis acids, Lewis bases, and reducing agents was investigated. Comparisons with the literature-known, analogous cyclic compounds [ClP(μ-NR)]2 (R=Ter=2,6-dimesitylphenyl) and [ClP(μ-PR)]2 (R=Mes*) are drawn, to obtain a better systematic understanding of the reactivity of cyclic NP species. Apart from experimental results, DFT computations are discussed to further the insight into bonding and electronic structure of these compounds. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    On Silylated Oxonium and Sulfonium Ions and Their Interaction with Weakly Coordinating Borate Anions
    (Weinheim : Wiley-VCH, 2019) Bläsing, Kevin; Labbow, Rene; Michalik, Dirk; Reiß, Fabian; Schul, Axel; Villinger, Alexander; Walker, Svenja
    Attempts have been made to prepare salts with the labile tris(trimethylsilyl)chalconium ions, [(Me3Si)3E]+ (E=O, S), by reacting [Me3Si-H-SiMe3][B(C6F5)4] and Me3Si[CB] (CB−=carborate=[CHB11H5Cl6]−, [CHB11Cl11]−) with Me3Si-E-SiMe3. In the reaction of Me3Si-O-SiMe3 with [Me3Si-H-SiMe3][B(C6F5)4], a ligand exchange was observed in the [Me3Si-H-SiMe3]+ cation leading to the surprising formation of the persilylated [(Me3Si)2(Me2(H)Si)O]+ oxonium ion in a formal [Me2(H)Si]+ instead of the desired [Me3Si]+ transfer reaction. In contrast, the expected homoleptic persilylated [(Me3Si)3S]+ ion was formed and isolated as [B(C6F5)4]− and [CB]− salt, when Me3Si-S-SiMe3 was treated with either [Me3Si-H-SiMe3][B(C6F5)4] or Me3Si[CB]. However, the addition of Me3Si[CB] to Me3Si-O-SiMe3 unexpectedly led to the release of Me4Si with simultaneous formation of a cyclic dioxonium dication of the type [Me3Si-μO-SiMe2]2[CB]2 in an anion-mediated reaction. DFT studies on structure, bonding and thermodynamics of the [(Me3Si)3E]+ and [(Me3Si)2(Me2(H)Si)E]+ ion formation are presented as well as mechanistic investigations on the template-driven transformation of the [(Me3Si)3E]+ ion into a cyclic dichalconium dication [Me3Si-μE-SiMe2]22+. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    A Comparative Study on the Thermodynamics of Halogen Bonding of Group 10 Pincer Fluoride Complexes
    (Weinheim : Wiley-VCH, 2019) Joksch, Markus; Agarwala, Hemlata; Ferro, Monica; Michalik, Dirk; Spannenberg, Anke; Beweries, Torsten
    The thermodynamics of halogen bonding of a series of isostructural Group 10 metal pincer fluoride complexes of the type [(3,5-R2-tBuPOCOPtBu)MF] (3,5-R2-tBuPOCOPtBu=κ3-C6HR2-2,6-(OPtBu2)2 with R=H, tBu, COOMe; M=Ni, Pd, Pt) and iodopentafluorobenzene was investigated. Based on NMR experiments at different temperatures, all complexes 1-tBu (R=tBu, M=Ni), 2-H (R=H, M=Pd), 2-tBu (R=tBu, M=Pd), 2-COOMe (R=COOMe, M=Pd) and 3-tBu (R=tBu, M=Pt) form strong halogen bonds with Pd complexes showing significantly stronger binding to iodopentafluorobenzene. Structural and computational analysis of a model adduct of complex 2-tBu with 1,4-diiodotetrafluorobenzene as well as of structures of iodopentafluorobenzene in toluene solution shows that formation of a type I contact occurs. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.