Search Results

Now showing 1 - 10 of 7053
Loading...
Thumbnail Image
Item

Transient radiation from a circular string of dipoles excited at superluminal velocity

2014, Arkhipov, Rostislav M., Arkhipov, Mikhail V., Babushkin, Ihar, Tolmachev, Yurii A.

This paper discusses the features of transient radiation from periodic one-dimensional resonant medium excited by ultrashort pulse. The case of circular geometry is considered for the harmonic distribution of the density of the particles along the circle. It is shown that a new frequency component arises in the spectrum of the scattered radiation in addition to the resonance frequency of medium. The new frequency appears both in the case of linear and nonlinear interaction, its value depends on the velocity of excitation pulse propagation and on the period of spatial modulation. In addition, the case when excitation moves at superluminal velocity and Cherenkov radiation arises is also studied.

Loading...
Thumbnail Image
Item

Simulation of the future sea level contribution of Greenland with a new glacial system model

2018, Calov, Reinhard, Beyer, Sebastian, Greve, Ralf, Beckmann, Johanna, Willeit, Matteo, Kleiner, Thomas, Rückamp, Martin, Humbert, Angelika, Ganopolski, Andrey

We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961-1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961-1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation-surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation-surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking the Helheim and Store glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.

Loading...
Thumbnail Image
Item

TIGeR - Tribologische Innovation mit Graphenen: Ansätze zur extremen Reibminderung : Abschlussbericht des BMBF Vorhabens ; Laufzeit des Vorhabens 01.08.2010 - 31.07.2012 ; ... wissenschaftliches Vorprojekt im WING - Programm

2012, Bennewitz, Roland

[no abstract available]

Loading...
Thumbnail Image
Item

Point contacts and boundary triples

2014, Lotoreichik, Vladimir, Neidhardt, Hagen, Popov, Igor Yu.

We suggest an abstract approach for point contact problems in the framework of boundary triples. Using this approach we obtain the perturbation series for a simple eigenvalue in the discrete spectrum of the model self-adjoint extension with weak point coupling.

Loading...
Thumbnail Image
Item

A new bifunctional hybrid nanostructure as an active platform for photothermal therapy and MR imaging

2016, Khafaji, Mona, Vossoughi, Manouchehr, Hormozi-Nezhad, M. Reza, Dinarvand, Rassoul, Börrnert, Felix, Irajizad, Azam

As a bi-functional cancer treatment agent, a new hybrid nanostructure is presented which can be used for photothermal therapy by exposure to one order of magnitude lower laser powers compared to similar nanostructures in addition to substantial enhancment in magnetic resonance imaging (MRI) contrast. This gold-iron oxide hybrid nanostructure (GIHN) is synthesized by a cost-effective and high yield water-based approach. The GIHN is sheilded by PEG. Therefore, it shows high hemo and biocompatibility and more than six month stability. Alongside earlier nanostructures, the heat generation rate of GIHN is compareable with surfactnat-capped gold nanorods (GNRs). Two reasons are behind this enhancement: Firstly the distance between GNRs and SPIONs is adjusted in a way that the surface plasmon resonance of the new nanostructure is similar to bare GNRs and secondly the fraction of GNRs is raised in the hybrid nanostructure. GIHN is then applied as a photothermal agent using laser irradiation with power as low as 0.5 W.cm−2 and only 32% of human breast adenocarcinoma cells could survive. The GIHN also acts as a dose-dependent transvers relaxation time (T2) MRI contrast agent. The results show that the GINH can be considered as a good candidate for multimodal photothermal therapy and MRI.

Loading...
Thumbnail Image
Item

Entwicklung eines Plasma-Emissionsdetektors für die Bestimmung von Schwermetall-Spezies für Anwendungen in der Umweltanalytik, Lebensmittel-Qualitätssicherung und Umweltmedizin : Schlussbericht ; (Bewilligungszeitraum: 01.02.2009 - 31.07.2012)

2012, Wolfgang Buscher, Wolfgang Buscher, Ehlbeck, Jörg, Piechotta, Christian

[no abstract available]

Loading...
Thumbnail Image
Item

A review of variational multiscale methods for the simulation of turbulent incompressible flows

2015, Ahmed, Naveed, Rebollo, Tomás Chacón, John, Volker, Rubino, Samuele

Various realizations of variational multiscale (VMS) methods for simulating turbulent incompressible flows have been proposed in the past fifteen years. All of these realizations obey the basic principles of VMS methods: They are based on the variational formulation of the incompressible Navier-Stokes equations and the scale separation is defined by projections. However, apart from these common basic features, the various VMS methods look quite different. In this review, the derivation of the different VMS methods is presented in some detail and their relation among each other and also to other discretizations is discussed. Another emphasis consists in giving an overview about known results from the numerical analysis of the VMS methods. A few results are presented in detail to highlight the used mathematical tools. Furthermore, the literature presenting numerical studies with the VMS methods is surveyed and the obtained results are summarized.

Loading...
Thumbnail Image
Item

Efficient coupling of inhomogeneous current spreading and dynamic electro-optical models for broad-area edge-emitting semiconductor devices

2017, Radziunas, Mindaugas, Zeghuzi, Anissa, Fuhrmann, Jürgen, Koprucki, Thomas, Wünsche, Hans-Jürgen, Wenzel, Hans, Bandelow, Uwe

We extend a 2 (space) + 1 (time)-dimensional traveling wave model for broad-area edgeemitting semiconductor lasers by a model for inhomogeneous current spreading from the contact to the active zone of the laser. To speedup the performance of the device simulations, we suggest and discuss several approximations of the inhomogeneous current density in the active zone.

Loading...
Thumbnail Image
Item

Chirped photonic crystal for spatially filtered optical feedback to a broad-area laser

2018, Brée, Carsten, Gailevicius, Darius, Purlys, Vytautas, Werner, Guillermo Garre, Staliunas, Kestutis, Rathsfeld, Andreas, Schmidt, Gunther, Radziunas, Mindaugas

We derive and analyze an efficient model for reinjection of spatially filtered optical feedback from an external resonator to a broad area, edge emitting semiconductor laser diode. Spatial filtering is achieved by a chirped photonic crystal, with variable periodicity along the optical axis and negligible resonant backscattering. The optimal chirp is obtained from a genetic algorithm, which yields solutions that are robust against perturbations. Extensive numerical simulations of the composite system with our optoelectronic solver indicate that spatially filtered reinjection enhances lower-order transversal optical modes in the laser diode and, consequently, improves the spatial beam quality.

Loading...
Thumbnail Image
Item

Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping

2019, Tondera, Christoph, Akbar, Teuku Fawzul, Thomas, Alvin Kuriakose, Lin, Weilin, Werner, Carsten, Busskamp, Volker, Zhang, Yixin, Minev, Ivan R.

Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain-machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m-1 , stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.