Search Results

Now showing 1 - 3 of 3
  • Item
    A distributed control problem for a fractional tumor growth model
    (Basel : MDPI, 2019) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we study the distributed optimal control of a system of three evolutionary equations involving fractional powers of three self-adjoint, monotone, unbounded linear operators having compact resolvents. The system is a generalization of a Cahn-Hilliard type phase field system modeling tumor growth that has been proposed by Hawkins-Daarud, van der Zee and Oden. The aim of the control process, which could be realized by either administering a drug or monitoring the nutrition, is to keep the tumor cell fraction under control while avoiding possible harm for the patient. In contrast to previous studies, in which the occurring unbounded operators governing the diffusional regimes were all given by the Laplacian with zero Neumann boundary conditions, the operators may in our case be different; more generally, we consider systems with fractional powers of the type that were studied in a recent work by the present authors. In our analysis, we show the Fréchet differentiability of the associated control-to-state operator, establish the existence of solutions to the associated adjoint system, and derive the first-order necessary conditions of optimality for a cost functional of tracking type. © 2019 by the authors.
  • Item
    Bulk-Surface Electrothermodynamics and Applications to Electrochemistry
    (Basel : MDPI, 2018) Dreyer, Wolfgang; Guhlke, Clemens; Müller, Rüdiger
    We propose a modeling framework for magnetizable, polarizable, elastic, viscous, heat conducting, reactive mixtures in contact with interfaces. To this end, we first introduce bulk and surface balance equations that contain several constitutive quantities. For further modeling of the constitutive quantities, we formulate constitutive principles. They are based on an axiomatic introduction of the entropy principle and the postulation of Galilean symmetry. We apply the proposed formalism to derive constitutive relations in a rather abstract setting. For illustration of the developed procedure, we state an explicit isothermal material model for liquid electrolyte|metal electrode interfaces in terms of free energy densities in the bulk and on the surface. Finally, we give a survey of recent advancements in the understanding of electrochemical interfaces that were based on this model.
  • Item
    Gradient and GENERIC Systems in the Space of Fluxes, Applied to Reacting Particle Systems
    (Basel : MDPI, 2018) Renger, D. R. Michiel
    In a previous work we devised a framework to derive generalised gradient systems for an evolution equation from the large deviations of an underlying microscopic system, in the spirit of the Onsager–Machlup relations. Of particular interest is the case where the microscopic system consists of random particles, and the macroscopic quantity is the empirical measure or concentration. In this work we take the particle flux as the macroscopic quantity, which is related to the concentration via a continuity equation. By a similar argument the large deviations can induce a generalised gradient or GENERIC system in the space of fluxes. In a general setting we study how flux gradient or GENERIC systems are related to gradient systems of concentrations. This shows that many gradient or GENERIC systems arise from an underlying gradient or GENERIC system where fluxes rather than densities are being driven by (free) energies. The arguments are explained by the example of reacting particle systems, which is later expanded to include spatial diffusion as well.