Search Results

Now showing 1 - 2 of 2
  • Item
    The molecular structure of 1,2:5,6-Di-O-isopropylidene-3-otoluenesulfonyl- α-D-glucofuranose
    (Basel : MDPI AG, 2012) Mamat, C.; Peppel, T.; Köckerling, M.
    The crystal and molecular structure of 1,2:5,6-di-O-isopropylidene-3-Otoluenesulfonyl- α-D-glucofuranose is reported. This compound crystallizes from a petroleum ether/ethyl acetate mixture with the chiral orthorhombic space group P212121 with four molecules in the unit cell. The unit cell parameters are: a = 9.7945(7) Å, b = 10.1945(7) Å, c = 21.306(1) Å, and V = 2127.4(2) Å3. No classical hydrogen bonds were found. Bond lengths and angles of this tosylated glucofuranose derivative are typical.
  • Item
    Influence of MoS2 on activity and stability of carbon nitride in photocatalytic hydrogen production
    (Basel : MDPI AG, 2019) Sivasankaran, R.P.; Rockstroh, N.; Kreyenschulte, C.R.; Bartling, S.; Lund, H.; Acharjya, A.; Junge, H.; Thomas, A.; Brückner, A.
    MoS2/C3N4 (MS-CN) composite photocatalysts have been synthesized by three different methods, i.e., in situ-photodeposition, sonochemical, and thermal decomposition. The crystal structure, optical properties, chemical composition, microstructure, and electron transfer properties were investigated by X-ray diffraction, UV-vis diffuse reflectance spectroyscopy, X-ray photoelectron spectroscopy, electron microscopy, photoluminescence, and in situ electron paramagnetic resonance spectroscopy. During photodeposition, the 2H MoS2 phase was formed upon reduction of [MoS4]2− by photogenerated conduction band electrons and then deposited on the surface of CN. A thin crystalline layer of 2H MoS2 formed an intimate interfacial contact with CN that favors charge separation and enhances the photocatalytic activity. The 2H MS-CN phase showed the highest photocatalytic H2 evolution rate (2342 µmol h−1 g−1, 25 mg catalyst/reaction) under UV-vis light irradiation in the presence of lactic acid as sacrificial reagent and Pt as cocatalyst.